Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.22/1595
Título: ANN based day-ahead ancillary services forecast for electricity market simulation
Autor: Faria, Pedro
Vale, Zita
Soares, João
Khodr, H. M.
Canizes, Bruno
Palavras-chave: ANN
Ancillary services
Electricity market
Simulation
Data: 2010
Editora: IEEE
Relatório da Série N.º: MELECON
Resumo: Adequate decision support tools are required by electricity market players operating in a liberalized environment, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services (AS) represent a good negotiation opportunity that must be considered by market players. Based on the ancillary services forecasting, market participants can use strategic bidding for day-ahead ancillary services markets. For this reason, ancillary services market simulation is being included in MASCEM, a multi-agent based electricity market simulator that can be used by market players to test and enhance their bidding strategies. The paper presents the methodology used to undertake ancillary services forecasting, based on an Artificial Neural Network (ANN) approach. ANNs are used to day-ahead prediction of non-spinning reserve (NS), regulation-up (RU), and regulation down (RD). Spinning reserve (SR) is mentioned as past work for comparative analysis. A case study based on California ISO (CAISO) data is included; the forecasted results are presented and compared with CAISO published forecast.
URI: http://hdl.handle.net/10400.22/1595
ISBN: 978-1-4244-5793-9
Versão do Editor: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5476367
Aparece nas colecções:ISEP – GECAD – Comunicações em eventos científicos

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
COM_PedroFaria_2010_GECAD.pdf547,17 kBAdobe PDFVer/Abrir    Acesso Restrito. Solicitar cópia ao autor!


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.