Relatório de Estágio

Sistemas Modulares de Escoramento para Estruturas de Contenção Enterradas

Sara Cristina Barros Branco Rodrigues

Orientador: Engenheiro José Filinto Castro Trigo
Supervisor: Engenheiro António Agostinho Martins Mendonça

Relatório de Estágio submetido para satisfação parcial dos requisitos do grau de Mestre em Engenharia Civil – Ramo Estruturas

Versão 1
Outubro de 2015
ÍNDICE GERAL

<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resumo</td>
<td>v</td>
</tr>
<tr>
<td>Abstract</td>
<td>vii</td>
</tr>
<tr>
<td>Agradecimentos</td>
<td>ix</td>
</tr>
<tr>
<td>ÍNDICE DE TEXTO</td>
<td>xi</td>
</tr>
<tr>
<td>Índice de Figuras</td>
<td>xv</td>
</tr>
<tr>
<td>Índice de Quadros</td>
<td>xix</td>
</tr>
<tr>
<td>Glossário</td>
<td>xxv</td>
</tr>
<tr>
<td>Abreviaturas</td>
<td>xxvii</td>
</tr>
<tr>
<td>1. Introdução</td>
<td>1</td>
</tr>
<tr>
<td>2. Estruturas de Contenção Flexíveis</td>
<td>5</td>
</tr>
<tr>
<td>3. Regulamentos e Softwares</td>
<td>47</td>
</tr>
<tr>
<td>4. Projeto em Estudo</td>
<td>55</td>
</tr>
<tr>
<td>5. Conclusões</td>
<td>91</td>
</tr>
<tr>
<td>Referências Bibliográficas</td>
<td>95</td>
</tr>
<tr>
<td>Anexos</td>
<td>99</td>
</tr>
</tbody>
</table>
RESUMO

No presente trabalho apresentam-se estudos desenvolvidos com o objetivo de análise, conceção e dimensionamento de sistemas de escoramentos metálicos modulares e reaproveitáveis a usar como alternativa técnica e econômica em estruturas de contenção periférica. O sistema concebido aplicou-se a um caso concreto de uma escavação urbana executada no centro de Luanda, Angola.

O projeto começou a ser estudado tendo em conta os estudos geológicos e geotécnicos do terreno em causa, e posteriormente foi estudada a solução construtiva elaborada. Feito o estudo sobre a obra que se realizou com uma parede moldada e ancoragens pré-esforçadas, foi possível, a partir dai, elaborar estudos com outro tipo de sistemas de apoio. Assim, realizaram-se estudos para sistemas de apoio com escoramento linear; colunas metálicas e por uma treliça.

Posteriormente, de forma a completar, complementar e poder comparar toda a pesquisa, foram efetuados mais quatro estudos, sendo os sistemas de apoio constituídos por colunas metálicas e/ou tubos circulares ou retangulares em forma elíptica no terreno do projeto e num terreno em forma de quadrado perfeito.

Através dos vários estudos foi possível comparar os resultados e perceber qual será a melhor forma de otimização para futuras obras. Foi gerado um método de escoramento, que é possível ser utilizado tendo em conta as particularidades de cada obra, constituído por perfis metálicos com dimensões standard formando elipses ou círculos, conforme a forma do terreno.

De maneira a finalizar este projeto foram estudados vários tipos de ligações, quer entre perfis, quer para os perfis e a parede, como também os perfis e os apoios verticais, caso sejam necessários.

Como conclusão, e de forma expedita foi analisado o custo direto que apenas abrange a quantidade de aço utilizada para cada tipo de apoio dimensionado, comparando a escavação do projeto em causa com a escavação quadrada.

Palavras-chave: Contenção Periférica, Escoramento, Modular, Reaproveitável
ABSTRACT

In this work we present studies developed for the purpose of analysis, design and dimensioning of metallic modular shoring systems and reusable for use as technical and economic alternative in retaining structures. The designed system was applied to a real urban excavation case performed in Luanda, Angola.

The project began to be studied taking into account the geological and geotechnical studies of the land in question, and was subsequently studied the constructive solution prepared. Made the research and the study of the work, which took place with a diaphragm wall and prestressed anchors, it was possible, from there, to prepare studies with other types of support systems. Thus, studies were performed to support systems via linear struts; metal columns and a truss.

Subsequently, in order to supplement, complement and to compare all the research, four studies were carried out, with the support systems consisting of metal columns and / or circular or rectangular pipes elliptical in the study case and in a square excavation.

Through various studies it was possible to compare the results and see what is the best way to optimize future works. A braced wall system was generated, which can be used taking into account the particularities of each work, consisting of metal profiles with standard dimensions forming ellipses or circles according to the shape of the terrain.

In order to complete this project there were studied various types of connections, both between profiles either between the profiles and the wall, as well as between profiles and vertical supports, if needed.

In conclusion, it was estimated the direct cost that only covers the amount of steel used for each type of support scaled by comparing the excavation of the project concerned with the square excavation.

Keywords: Retaining wall, Strut, Modular, Reusable
AGRADECIMENTOS

O presente trabalho resulta de uma tentativa esforçada para atingir uma meta há muito perspetivada e ambicionada e insere-se na última etapa do Mestrado de Engenharia Civil – Ramo de Estruturas, do Instituto Superior de Engenharia do Porto.

Porque só uma junção de esforços e a cooperação de todos os colegas de trabalho, família e amigos tornou possível a realização deste projeto e a conclusão desta etapa, gostaria de expressar o meu agradecimento especial:

Ao meu orientador de estágio, Engenheiro José Filinto Castro Trigo, pela disponibilidade e orientação demonstradas.

Ao meu supervisor de estágio, Engenheiro António Agostinho Martins Mendonça, um agradecimento muito especial, por toda a dedicação demonstrada e pela competência, pela compreensão, disponibilidade oferecida e por todas as orientações ao longo de todo o trabalho.

À Soares da Costa e ao Engenheiro Luís Afonso pela oportunidade de realizar este estágio.

A todos os meus colegas de trabalho pelo acolhimento proporcionado, por todos os esclarecimentos, opiniões, conselhos, compreensão e bons momentos partilhados.

Ao Engenheiro Diogo Ribeiro e ao Engenheiro Bruno Costa pelo apoio prestado e pela disponibilidade oferecida.

Agradeço a todos os meus amigos, pelo constante incentivo e força e apoio que sempre me transmitiram.

À minha família, um agradecimento eterno, pela preocupação, motivação, compreensão e interesse sempre demonstrado pelo meu trabalho, pela energia, confiança, amizade e apoio incondicional ao longo de todo o meu percurso académico e profissional.
ÍNDICE DE TEXTO

1. Introdução
 1.1. Considerações Iniciais
 1.2. Objetivos e Organização do Relatório de Estágio

2. Estruturas de Contenção Flexíveis
 2.1. Introdução
 2.2. Tipos de Estruturas de Contenção Flexíveis
 2.2.1. Parede Tipo “Berlim”
 2.2.2. Parede Moldada
 2.2.3. Cortina de Estacas
 2.2.4. Cortina de Estaca-Prancha
 2.2.5. Sistema Híbrido
 2.3. Sistemas de Apoio de Cortinas Flexíveis
 2.3.1. Ancoragens
 2.3.2. Sistema de Escoramento
 2.3.3. Sistemas de Apoio Alternativos

3. Regulamentos e Softwares
 3.1. NCCI SN044a
 3.1.1. Verificação da Resistência Plástica da Chapa
 3.1.2. Verificação da Resistência do Parafuso
 3.1.3. Soldadura
Índice de Texto

3.2.	Autodesk Robot Structural Analysis	52
4.	Projeto em Estudo	55
4.1.	Descrição Geral da Obra	56
4.2.	Solução Base	58
4.2.1.	Caracterização Geológica e Geotécnica	58
4.2.2.	Impulsos Atuantes	60
4.2.3.	Retro Análise da Solução de Projeto	64
4.3.	Estudo de Soluções Variantes	66
4.3.1.	Escoramento Linear	66
4.3.2.	Colunas Metálicas	68
4.3.3.	Treliça Periférica	71
4.3.4.	Variações da Geometria de Escavação	73
4.3.5.	Evolução da Solução Vigada	75
4.4.	Solução Modular Proposta	76
5.	Conclusões	91
5.1.	Conclusões	91
5.2.	Desenvolvimentos Futuros	93

Referências Bibliográficas | 95 |

Anexos | 99 |
Anexo 1	101
Anexo 2	103
Anexo 3	105
Anexo 4	107
Anexo 5	109
Anexo 6	111
Anexo 7	113
Índice de Texto

Anexo 8 115
Anexo 9 117
ÍNDICE DE FIGURAS

Figura 2.1 – Diferentes sistemas de apoio de estruturas de contenção.. 6
Figura 2.2 – Parede tipo Berlim escorada, de caráter provisório, constituída por pranchas de madeira
 e perfis metálicos .. 8
Figura 2.3 – Execução de uma parede moldada ancorada .. 9
Figura 2.4 – Equipamentos de execução de parede moldada .. 11
Figura 2.5 – Junta pré-fabricada .. 14
Figura 2.6 – Exemplos de cortina de estacas ... 15
Figura 2.7 – Cortina de estacas espaçadas ... 18
Figura 2.8 – Cortina de estacas contíguas .. 19
Figura 2.9 – Cortina de estacas secantes .. 20
Figura 2.10 – Exemplo de uma cortina de estacas secantes ... 20
Figura 2.11 – Elementos utilizados em cortinas estacas-prancha ... 23
Figura 2.12 – Cortina de estacas-prancha ... 24
Figura 2.13 - Tipologias dos sistemas de jet grouting: sistema simples; sistema duplo; sistema tripo,
 respetivamente .. 26
Figura 2.14 – Cortina de estacas com enchimento em betão pobre ... 28
Figura 2.15 – Cortina de estacas com enchimento em jet grouting ... 28
Figura 2.16 – Ancoragem pré-esforçada tipo ... 30
Figura 2.17 – Cilindro hidráulico para pré-esforço de cabos de ancoragem 31
Figura 2.18 – Parede tipo “Berlim” ancorada .. 32
Figura 2.19 – Condicionalismos a respeitar na localização de ancoragens pré-esforçadas 33
Índice de Figuras

<table>
<thead>
<tr>
<th>Figura</th>
<th>Descrição</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.20</td>
<td>Limites máximos das relações largura-espessura para componentes comprimidos.</td>
<td>37</td>
</tr>
<tr>
<td>2.21</td>
<td>Utilização em obra do sistema top-down</td>
<td>42</td>
</tr>
<tr>
<td>2.22</td>
<td>Processo de execução do sistema top-down</td>
<td>43</td>
</tr>
<tr>
<td>2.23</td>
<td>Vista do sistema de “ ancoragens virtuais”</td>
<td>44</td>
</tr>
<tr>
<td>2.24</td>
<td>Esquema de funcionamento do sistema de “ ancoragens virtuais”</td>
<td>45</td>
</tr>
<tr>
<td>2.25</td>
<td>Vistas do sistema de “ roda de bicicleta”</td>
<td>46</td>
</tr>
<tr>
<td>3.1</td>
<td>Parâmetros geométricos pela norma SN044a para tubos circulares</td>
<td>48</td>
</tr>
<tr>
<td>3.2</td>
<td>Tipos de cálculos do Robot Structural Analysis 2016</td>
<td>52</td>
</tr>
<tr>
<td>4.1</td>
<td>Solução construtiva do projeto de execução em estudo</td>
<td>56</td>
</tr>
<tr>
<td>4.2</td>
<td>Localização do edifício em estudo, Luanda</td>
<td>57</td>
</tr>
<tr>
<td>4.3</td>
<td>Imagem do projecto de execução, na fase de construção, do Edificio Vandunen.</td>
<td>65</td>
</tr>
<tr>
<td>4.4</td>
<td>Ilustração tipo da solução de escoramento linear</td>
<td>67</td>
</tr>
<tr>
<td>4.5</td>
<td>Ilustração tipo dos pormenores de ligação</td>
<td>67</td>
</tr>
<tr>
<td>4.6</td>
<td>Ilustração tipo da solução de colunas metálicas</td>
<td>69</td>
</tr>
<tr>
<td>4.7</td>
<td>Ilustração tipo do pormenor de ligação à parede</td>
<td>70</td>
</tr>
<tr>
<td>4.8</td>
<td>Ilustração tipo da solução da treliça</td>
<td>71</td>
</tr>
<tr>
<td>4.9</td>
<td>Sistemas de apoio tipo para escavação quadrada</td>
<td>74</td>
</tr>
<tr>
<td>4.10</td>
<td>Esquema tipo do círculo e da elipse</td>
<td>75</td>
</tr>
<tr>
<td>4.11</td>
<td>Esquemas das soluções finais</td>
<td>84</td>
</tr>
<tr>
<td>4.12</td>
<td>Módulos de colunas concebidas</td>
<td>85</td>
</tr>
<tr>
<td>4.13</td>
<td>Cabeço com parafuso regulável</td>
<td>86</td>
</tr>
<tr>
<td>4.14</td>
<td>Planta do modelo da estrutura no Robot 2016</td>
<td>87</td>
</tr>
<tr>
<td>4.15</td>
<td>Perspetiva do modelo da estrutura no Robot 2016</td>
<td>87</td>
</tr>
<tr>
<td>4.16</td>
<td>Esquema retirado da solução do Robot</td>
<td>88</td>
</tr>
<tr>
<td>4.17</td>
<td>Visualização 3D da ligação</td>
<td>88</td>
</tr>
</tbody>
</table>
ÍNDICE DE QUADROS

Quadro 2.1 – Intervalo de coeficientes de segurança mais correntes.. 34
Quadro 4.1 – Conclusões dos ensaios SPT.. 58
Quadro 4.2 – Valores característicos dos solos.. 59
Quadro 4.3 – Contabilização de ancoragens para um nível de escavação... 64
Quadro 4.4 – Valores determinados para o cálculo das ancoragens.. 65
Quadro 4.5 – Características dos perfis tubulares a utilizar. ... 66
Quadro 4.6 – Valores totais para uso de escoramento linear... 68
Quadro 4.7 – Cantoneiras dimensionadas.. 68
Quadro 4.8 – Valores totais para uso de colunas metálicas... 70
Quadro 4.9 – Quantidades totais das soluções estudadas... 72
Quadro 4.10 – Quantificação das soluções.. 74
Quadro 4.11 - Sistema de apoio em elipse .. 77
Quadro 4.12 - Sistema de apoio em círculo.. 77
Quadro 4.13 - Sistema de apoio em círculo.. 78
Quadro 4.14 – Estudo sobre escoramento linear.. 79
Quadro 4.15 – Estudo de colunas metálicas.. 80
Quadro 4.16 – Estudo da treliça.. 81
GLOSSÁRIO

x-x – eixo longitudinal de um elemento
y-y – eixo de uma secção transversal
z-z – eixo de uma secção transversal
b – largura de uma secção transversal
h – altura de uma secção transversal
t – espessura
fy – tensão de cedência
fu – tensão ultima
E – módulo de elasticidade
M_{Ed} – valor de cálculo do momento fletor atuante
ε – extensão
d – diâmetro exterior de uma secção tubular circular
γ_{M0} – coeficiente parcial de segurança para a resistência de secções transversais de qualquer classe
γ_{M1} – coeficiente parcial de segurança para a resistência dos elementos em relação a fenómenos de encurvadura, avaliada através de verificações individuais de casa elemento
γ_{M2} – coeficiente parcial de segurança para a resistência à rotura de secções transversais tracionadas em zonas com furos de ligação
N_{Ed} – valor de cálculo do esforço normal atuante
n – número de parafusos ao longo de qualquer linha que atravesse totalmente a largura de um elemento, ou parte dele, em diagonal ou ziguezague
A_{eff} – área efetiva de uma secção transversal
Glossário

\(N_{t,Rd} \) – valor de cálculo do esforço normal resistente de tração

\(N_{pl,Rd} \) – valor de cálculo do esforço normal resistente plástico da seção bruta

\(N_{u,Rd} \) – valor de cálculo do esforço normal resistente último da seção útil na zona com furos de ligação

\(A_{net} \) – área útil de uma seção transversal

\(N_{c,Rd} \) – valor de cálculo do esforço normal resistente à compressão de uma seção transversal

\(I \) – momento de inércia

\(A \) – área de uma seção transversal

\(N_{b,Rd} \) – valor de cálculo do esforço normal resistente à encurvadura de um elemento comprimido

\(M_{N,Rd} \) – valores de cálculo do momento fletor resistente, reduzido pela interação com o esforço normal

\(\chi \) – coeficiente de redução associado ao modo de encurvadura considerado

\(\phi \) – valor para determinar o coeficiente de redução \(\chi \)

\(\alpha \) – fator de imperfeição para a encurvadura de elementos comprimidos

\(N_{cr} \) – valor crítico de esforço normal para o modo de encurvadura elástica considerado, determinado com base nas propriedades da seção transversal bruta

\(M_{pl,Rd} \) – valor de cálculo do momento fletor resistente plástico da seção bruta

\(a_w \) – área da alma

\(L \) – comprimento de referência

\(L_{cr} \) – comprimento de encurvadura
ABREVIATURAS

PD – peça desenhada
1. **INTRODUÇÃO**

1.1. **Considerações Iniciais**

Serve o presente Relatório para dar conhecimento do trabalho desenvolvido ao longo do período de estágio curricular, no âmbito da Unidade Curricular de Trabalho Preparatório e Concepção, do 1º semestre do 2º ano, do Curso de Mestrado em Engenharia Civil, ramo de Estruturas. Na seguinte exposição proceder-se-á a uma síntese dos trabalhos efetuados nesse período de tempo.

O estágio centrou-se no acompanhamento do projeto e construção de estruturas de contenção de obras enterradas em ambiente urbano.

As obras subterrâneas em ambiente urbano, por geralmente se encontrarem próximas de outras edificações, devido à valorização e ocupação das cidades, geralmente, são executadas através de escavações de face vertical, suportadas por estruturas de contenção flexíveis.

Peck definiu uma estrutura de contenção flexível, como uma estrutura que apresenta deformabilidade suficiente para que as pressões do terreno que suporta se alterem em distribuição e grandeza devido a essa deformabilidade, modificando, por consequência, os esforços na própria cortina/parede. Assim, é possível distinguir vários tipos de estruturas de contenção flexíveis, das quais se destacam as Paredes tipo Berlim, Paredes Moldadas, Cortina de Estacas e Cortina de Estacas-Prancha. [17]

Este tipo de estruturas têm como principal função conter o terreno na periferia da construção, suportando os impulsos do terreno escavado com o auxílio de sistemas de apoio, onde, por norma, são utilizados escoramentos e/ou ancoragens, que podem servir como estrutura definitiva ou provisória.
Capítulo 1

A utilização de ancoragens é bastante comum atualmente por se tratar de um sistema simples e relativamente económico comparando com outro tipo de sistemas como por exemplo os escoramentos. Outra vantagem da utilização de ancoragem é a sua adaptação em escavações em ambientes complexos e agressivos, por se tratar de um sistema de apoio interno no meio em que se insere.

Por outro lado, a utilização de perfis metálicos em escoramentos de contenções periféricas torna-se interessante devido, além do seu potencial de maior eficácia no controlo das deformações, à sua possível reutilização tornando-se numa solução económica a longo prazo. Estes pressupostos constituíram o ponto de partida deste estudo em que se avalia a sua viabilidade como alternativa em estruturas de contenção enterradas.

O presente trabalho tem assim como objetivo o estudo e desenvolvimento de um sistema de apoio para obras onde haja paredes de contenção onde se possam reutilizar os vários sistemas de apoio utilizados em diversas obras futuras, de forma a rentabilizar os custos associados.
1.2. **Objetivos e Organização do Relatório de Estágio**

O presente relatório sintetiza o programa de trabalhos desenvolvido no âmbito do estágio na Direção Técnica da Soares da Costa. A atividade centrou-se no apoio técnico de obras geotécnicas em particular de obras de contenções periféricas de escavações.

Durante o estágio efetuou-se o dimensionamento de sistemas alternativos para apoio de paramentos de contenção constituídos por estruturas metálicas de escoramento constituídas por módulos pré-fabricados aplicando-se a solução concebida a uma obra real executada pela Soares da Costa, S.A em Luanda, Angola.

Neste enquadramento o tema escolhido para o presente relatório foi “Sistemas Modulares de Escoramento para Estruturas de Contenção Enterradas”. Esta escolha foi feita a pensar nas várias etapas que o tema abrange, ou seja, desde da sua conceção, ao pré-dimensionamento de soluções bem como a avaliação da aplicabilidade no contexto da reutilização dos elementos, adaptabilidade aos condicionalismos da obra, facilidade de montagem e transporte.

Numa fase inicial, o principal objetivo centrou-se no dimensionamento e pormenorização de estruturas metálicas modulares e reaproveitáveis de contenção para aplicar em obras com 3 a 5 caves. Posteriormente, procedeu-se à análise económica comparativa com uma solução tradicional de escoramento, de modo a que a solução criada, caso se revele economicamente vantajosa, seja aplicada a obras de contenção a executar pela Soares da Costa, S.A.

O principal objetivo deste Relatório de Estágio é o estudo de uma solução de um sistema de apoio com perfis metálicos reutilizáveis. O texto está organizado em 5 capítulos e 10 anexos, sendo neste primeiro descritos a motivação, objetivos e estrutura do trabalho.

No Capítulo 2 são expostos os diversos tipos de estruturas de contenção flexíveis mais comuns, e para cada tipologia é realizada uma breve introdução ao seu funcionamento estrutural, sendo igualmente apontadas as vantagens e desvantagens da sua aplicação e o seu método construtivo. Tece-se algumas considerações relativamente a este tipo de estruturas, isto é, através de ancoragens e escoramentos, ou sistema *top-down*, escoramento interno ou parede moldada pré-esforçada.

No Capítulo 3 estão referenciados os regulamentos e softwares utilizados para este estudo, de forma a apresentar as verificações efetuados na análise e a ilustrar as capacidades dos programas para os cálculos, respectivamente.
Capítulo 1

O Capítulo 4 é relativo ao projeto em estudo, onde estão apresentados todos os estudos efetuados, de forma a mostrar a solução mais vantajosa economicamente para posterior sugestão da sua aplicação em outras obras futuras.

A encerrar o presente relatório, apresenta-se no Capítulo 5 uma síntese do trabalho desenvolvido e sugerem-se algumas perspetivas para futuros desenvolvimentos.
2. **ESTRUTURAS DE CONTENÇÃO FLEXÍVEIS**

2.1. **INTRODUÇÃO**

Designa-se por estruturas de suporte flexíveis as estruturas de contenção que experimentam em serviço deformações por flexão suscetíveis de condicionar a grandeza e a distribuição das pressões de terras, isto é, dos impulsos, dos momentos fletores e dos esforços transversos para os quais são dimensionadas.

O paramento colocado na face da escavação é vulgarmente designado por “cortina” ou “parede”, e os elementos lineares que lhe dão apoio designam-se por escoras, quando colocadas para o interior do corte, ou ancoragens, quando são instaladas no interior do maciço atrás da cortina. [19]

As deformações por flexão a que este tipo de estruturas está sujeito condicionam o comportamento da própria estrutura devido a uma redistribuição de pressões por efeito de arco que agrava as pressões de terras nas zonas com deslocamentos mais reduzidos e reduz as mesmas nas zonas com maiores deslocamentos, podendo mesmo atingir valores inferiores aos correspondentes ao estado ativo de Rankine. Esta redistribuição depende ainda do tipo e número de apoios a que a parede está sujeita.
2.2. **TIPOS DE ESTRUTURAS DE CONTENÇÃO FLEXÍVEIS**

As estruturas de suporte flexíveis distinguem-se através de três fatores principais: pelos elementos que asseguram a sua estabilidade, pelos materiais que são empregues e pelo seu processo construtivo.

Conforme o sistema de apoio a que a estrutura está sujeita, as estruturas de contenção podem ser denominadas por monoapoiadas, multiapoiadas e autoportantes (Figura 2.1). As cortinas monoapoiadas caracterizam-se pela presença de um único ponto de apoio, seja por escoras ou ancoragens, acima do nível de escavação. As cortinas multiapoiadas caracterizam-se por possuírem vários níveis de apoio ao longo da altura da parede, igualmente por escoras ou ancoragens. Por último, as cortinas autoportantes caracterizam-se por terem a capacidade de se auto suportarem sem qualquer apoio acima da cota da base da escavação.

![Diagrama de Tipos de Estruturas de Contenção](image_url)

a) Cortina monoapoiada. b) Cortina multiapoiada. c) Cortina autoportante.

Figura 2.1 – Diferentes sistemas de apoio de estruturas de contenção.

Fonte: Adaptado de [19].
Tipos de Estruturas de Contenção Flexíveis

Os materiais mais comuns neste tipo de estruturas de suporte são o betão armado, o aço e a madeira. Os perfis metálicos mais comuns são um exemplo da aplicação do aço mas, no entanto, apresentam uma menor rigidez e capacidade de resistir a esforços quando comparados com soluções de betão armado. A madeira, normalmente é usada em pranchas entre perfis metálicos tipo “I” ou “H”, e tem como vantagens a sua fácil aplicação e adaptação às condições de instalação, para além da redução do peso da estrutura.

A escolha do tipo de estrutura de contenção flexível a utilizar é feita com base em diversos fatores tais como:

- A altura de escavação;
- As características geológico-geotécnicas do solo a escavar, (especialmente coesão e ângulo de atrito);
- A posição do nível freático;
- O carácter temporário ou definitivo da solução estrutural;
- A distância entre a estrutura e os edifícios ou propriedades vizinhas;

Considerando os diversos fatores a escolha do tipo de estrutura de contenção flexível mais adequada a ser utilizada para obras subterrâneas pode denominar-se por:

- Parede tipo “Berlim”;
- Parede Moldada;
- Cortina de Estacas;
- Cortina de Estacas-Prancha;
- Sistemas híbridos.
2.2.1. Parede Tipo “Berlim”

As paredes tipo “Berlim”, em termos históricos, são uma das formas mais antigas de estruturas de contenção mais utilizadas em escavações profundas, tendo origem na Alemanha, no início do século XX, onde a sua técnica construtiva se desenvolveu com a construção do Metro de Berlim.

Em Portugal, mais precisamente em Coimbra, à data de 1971, foi construída a primeira cortina de contenção, inspirada nas cortinas tipo Berlim já utilizadas no exterior.

A estrutura de suporte caracteriza-se pela introdução de perfis metálicos espaçados no terreno com vista à absorção das cargas verticais. Distingue-se soluções empregues em estruturas provisórias e em estruturas definitivas.

Nas estruturas provisórias, à medida que é feita a escavação, pranchas de madeira, metálicas ou de betão pré-fabricado são colocadas entre os perfis. De um modo geral, os perfis a instalar apresentam a forma de I, H ou U duplo, e podem ser cravados no terreno ou instalados após a execução prévia de furos no maciço (Figura 2.2).

Figura 2.2 – Parede tipo Berlim escorada, de caráter provisório, constituída por pranchas de madeira e perfis metálicos.
Fonte: www.soaresdacosta.com [38]
No caso de estruturas definitivas, a solução mais corrente, corresponde a um paramento em betão armado associado aos perfis metálicos verticais (envolvidos ou exteriores) (Figura 2.3).

Quer na situação provisória quer na situação definitiva as paredes poderão ser escoradas e/ou ancoradas.

As paredes tipo “Berlim” são recomendadas para terrenos com alguma coerência, sem presença de água e sem edifícios suscetíveis a assentamentos na periferia da contenção.

As principais vantagens que esta solução apresenta são as seguintes:

- Solução econômica dada a facilidade de construção e aos bons rendimentos diários por área de parede;
- Permetem, em simultâneo, a realização da escavação e a execução da parede de contenção;
- Não exigem grande área de estaleiro ou acessos largos à obra, nem necessitam de pessoal ou tecnologia especializada.
Capítulo 2

Como desvantagens da utilização deste tipo de solução como estrutura de contenção estas apresentam:

- Mau desempenho para nível freático elevado devido à percolação dos finos e à erosão interna do solo;
- Exigem terrenos com alguma consistência para permanecer sem suporte enquanto a entivação é colocada;
- A instalação de perfis metálicos no terreno pode provocar vibrações indesejáveis e podem causar descompressões no solo originando assentamentos nas fundações de construções vizinhas.

2.2.2. Parede Moldada

2.2.2.1. Parede Moldada “in situ”

As paredes moldadas “in situ”, são as mais comuns e, correspondem a paredes de contenção definitivas de betão armado, executadas faseadamente em grandes painéis de betão contíguos, betonados em trincheiras escavadas mecanicamente.

A escavação pode ser feita através de três equipamentos distintos consoante o tipo de solo, ou seja, para solos mais correntes a utilização de um balde de maxilas mecânico é muito comum. Pode também utilizar-se um equipamento hidráulico ou, para materiais mais resistentes, e menos frequentemente uma hidrofesa. Caso se esteja perante rocha ou de um solo rochoso a utilização de um trépano ou de pré-furação é recomendada. A estabilidade das paredes da vala durante a fase de execução é garantida pela utilização de fluidos estabilizadores (bentonite ou polímeros). Posteriormente é executada a escavação para colocação da armadura seguida da sua betonagem.
Tipos de Estruturas de Contenção Flexíveis

Na Figura 2.4 estão apresentados alguns dos equipamentos utilizados para a realização de estruturas de contenção do tipo parede moldada.

Estruturalmente, as paredes moldadas são elementos com espessuras relativamente grandes, sendo a dimensão mínima de 0.40 m, podendo atingir dimensões superiores até 1.00 m, e podem alcançar profundidades superiores a 45 m.

A garantia da estabilidade das paredes durante a escavação é assegurada por diversos sistemas de apoio, entre os quais se destacam as ancoragens. Em alternativa, podem igualmente ser aplicadas escoras apoiadas em faces opostas da parede.

Como principais vantagens, a execução de paredes moldadas:

- Permite várias frentes de trabalho e grande maleabilidade na programação dos painéis;
- Podem ser utilizadas em diversos tipos de terreno, mesmo com nível freático elevado, percolação de água e/ou terrenos incoerentes ou moles pela adaptação da lama estabilizadora, do esquipamento de escavação e da geometria do painel;
Capítulo 2

- Apresentam bom comportamento sísmico, ruído e vibrações reduzidos e minimizam descompressões e deformações do terreno e das fundações na vizinhança da escavação;
- Permitem atingir profundidades elevadas;
- Garantem boa estanqueidade à passagem de água do exterior para o interior da estrutura.

Os aspetos negativos deste tipo de solução prendem-se com as seguintes causas:

- A solução é relativamente dispendiosa devido ao uso de lamas bentoníticas (fabrico, recuperação e reciclagem) e de equipamentos especiais;
- Dimensionamento condicionado pela fase provisória;
- Exigem grande espaço em estaleiro, e equipamento e mão-de-obra especializada;
- Na presença de terrenos rijos ou na existência de rochas no terreno a execução é mais difícil e conduz a menores rendimentos diários por área de parede, por vezes, levando à adaptação da solução.

2.2.2.2. Parede Moldada “Pré-Fabricada”

Este tipo de parede confere o mesmo princípio do mencionado para as paredes moldadas “in situ”. A operação é iniciada com a escavação do painel por recurso a lamas estabilizadoras.

Posteriormente são colocados os painéis pré-fabricados, constituídos por betão pré-esforçado com uma espessura reduzida na trincheira com auxílio de uma grua. Relativamente à forma dos painéis estes podem ter formas variadas e mais complexas sendo que quanto mais simples for a sua geometria e com geometrias repetitivas mais vantajoso se torna economicamente.

A grande diferença entre as paredes moldadas “in situ” e as paredes moldadas “pré-fabricadas” encontra-se nas operações de moldagem do painel (“in situ” ou prévia).

Na necessidade de nas primeiras se escavar até à profundidade necessária para garantir a estanqueidade da parede enquanto nas segundas os painéis pré-fabricados são colocados à profundidade necessária à estabilidade do terreno.
Comparativamente às paredes moldadas “in situ”, este tipo de parede de contenção permite maior poupança no consumo de betão, não só pela espessura da parede ser menor, mas também porque o betão é doseado de forma mais eficaz.

A utilização de paredes moldada com painéis pré-fabricados tem aspetos positivos comparativamente às paredes moldadas “in situ” de betão armado, dos quais se destacam:

- Geralmente permite painéis com maiores dimensões;
- Os painéis são moldados em unidades industriais especializados o que permite melhor qualidade de betão e maior precisão relativamente ao posicionamento da armadura;
- Maior garantia de impermeabilização das juntas, pois a sua geometria permite proceder a injeções suplementares de produtos impermeabilizantes;
- Possibilidade de incorporar na parede, elementos que sirvam de arquitetura da construção;
- Possibilidade de trazer para obra, as cabeças das vigas de apoio de eventuais ancoragens a serem executadas, convenientemente terminadas.

Em contrapartida, como principais inconvenientes destacam-se:

- Limitações em relação ao comprimento dos painéis pré-fabricados. No caso de profundidades elevadas é necessário recorrer a um sistema misto de parede moldada, ou seja, na parte inferior executa-se a parede moldada “in situ” e na parte superior com painéis pré-fabricados;
- Necessidade de transportes dispendiosos e de equipamentos de carga robustos.

2.2.2.3. Elementos de Junta

A solução corrente empregue nas juntas entre os painéis de parede moldada “in situ” consiste na instalação de tubos e/ou perfis metálicos. Este dispositivo além de melhorar a estanquidade entre painéis serve de elemento de “cofragem” na moldagem dos painéis.

Recentemente, e em alternativa ao sistema convencional tem vindo a ser aplicada uma junta pré-fabricada em betão armado (Figura 2.5).
A utilização deste tipo de junta tem como principal vantagem, além da melhoria da estanqueidade, um maior controlo geométrico do panel bem como um maior rendimento das operações.

2.2.2.4. Parede Moldada Pré-Esforçada"

Trata-se de um sistema com utilização de armaduras de pré-esforço compostas por cabos de alta resistência instalados em conjuntos com a armadura passiva, onde é aplicado um pré-esforço vertical permitindo [19]:

a. Redução da armadura a instalar na parede evitando, em casos de solicitações mais severas, recorrer ao aumento da sua secção, com claras vantagens económicas;

b. Aumento da resistência e rigidez da parede, o que pode permitir reduzir o número de níveis de escoramento;

c. Alteração do estado de tensão do solo envolvente da parede de forma positiva.
2.2.3. Cortina de Estacas

A cortina de estacas é um tipo de estrutura de contenção flexível, onde as estacas são executadas antes da escavação. Na Figura 2.6 é possível verificar dois exemplos de estruturas deste tipo.

Por ser de fácil e rápida concretização trata-se de uma solução de contenção de suporte de terras cada vez mais utilizado nos grandes centros urbanos, onde os meios e equipamentos utilizados têm sofrido grandes desenvolvimentos apresentando grande versatilidade.

![Cortina de estacas escorada.](image1)

![Cortina de estacas ancorada e escorada.](image2)

Figura 2.6 – Exemplos de cortina de estacas.
Fonte: www.soaresdacosta.com [38]

Esta solução consiste em executar um alinhamento de estacas moldadas no terreno sendo este posteriormente escavado num dos lados do referido alinhamento.

De igual modo que nas duas estruturas de contenção anteriormente referidas, neste tipo de solução, a utilização de ancoragens como sistema de apoio é muito comum, mas também é possível a utilização de um sistema de escoramento com perfis metálicos ou a metodologia top-down.

As vantagens da utilização da cortina de estacas como parede de contenção são [20]:

- O baixo custo, para a generalidade das situações dada a versatilidade dos equipamentos empregues;

- Rapidez de execução quer para estruturas de contenção temporárias, quer para permanentes, desde que as condições de perfuração sejam propícias;
Capítulo 2

- Processo de instalação de equipamento e execução relativamente limpo (exceto quando se utilizam lamas bentoníticas) e pouco ruidoso;

- Para profundidades de escavação pequenas conseguem-se distâncias reduzidas entre a cortina de estacas e eventuais estruturas vizinhas;

- Podem ser utilizadas em conjunto com outras soluções de contenção periférica – sistemas híbridos (por exemplo jet grouting);

- Em geral, apesar de dependente do seu diâmetro, podem necessitar de menos níveis de ancoragens em relação a outros tipos de estruturas de contenção.

Do mesmo como desvantagem da utilização deste tipo de solução [20]:

- Limitações em termos de altura, não só devido à profundidade até à qual as estacas podem ser executadas, mas também devido à dificuldade de garantir a verticalidade em perfurar solos muito rígidos na base da cortina;

- Baixa eficiência das secções circulares em termos de flexão, a que se junta o facto de ser necessário prever um elevado recobrimento das armaduras devido à dificuldade em garantir o seu valor na fase de construção;

- Não há garantia de estanqueidade (exceto para cortinas de estacas secantes, caso sejam bem executáveis);

- Estacas com diâmetros muito grandes obrigam a um espaço maior entre a cortina e eventuais estruturas existentes.
2.2.3.1. Cortina de Estacas Moldadas “in situ”

Geralmente, as cortinas de estacas moldadas “in situ” são realizadas com estacas de secção circular em betão armado e são, normalmente, utilizadas como estruturas de contenção definitiva.

O seu processo construtivo engloba estacas com vários comprimentos e diâmetros, em função dos possíveis métodos de execução que abrangem.

Para Mascarenhas este tipo de cortina de contenção apresenta alguns benefícios, isto é [18]:

- O dimensionamento da armadura não depende das condições de manuseamento e cravação;
- Atingem profundidades elevadas;
- Podem ser recolhidas amostras à medida que é feita a escavação;
- Podem ser executadas com comprimentos variados e podem ter diâmetros grandes, evitando assim o agrupamento de estacas;
- Pouco afetam as condições iniciais do terreno.

Da mesma forma, Mascarenhas expôs os inconvenientes da utilização deste tipo de estrutura [18]:

- Possibilidade de se dar estrangulamento em solos moles ou soltos;
- Dificuldade em garantir a verticalidade das estacas;
- Dificuldade em garantir as dimensões da secção transversal, a verticalidade e o recobrimento das armaduras;
- A presença de água no terreno pode provocar anomalias durante a betonagem;
- Exigem equipamento e mão-de-obra especializada.

Conforme o espaçamento entre as estacas, estas podem ser distintas de três formas. Podem formar cortinas de estacas espaçadas, contíguas ou secantes. A escolha por um dos tipos de espaçamentos mencionados depende de fatores, de acordo com Brito [8]:
Capítulo 2

- **Presença de nível freático** – por norma, impossibilita a execução de estacas espaçadas e contíguas;
- **Coesão do solo** – quanto mais coerente for o solo, melhor para a aplicação de estacas espaçadas;
- **Necessidade de estanqueidade** – limita a utilização a estacas secantes;
- **Disponibilidade financeira e prazos de tempo a cumprir** – a execução de cortinas com estacas espaçadas diminui ao custo e ao tempo de execução;
- **Número de estacas a executar** – em menor número quando se trata de cortinas de estacas espaçadas.

2.2.3.1.1. **Cortina de Estacas Espaçadas**

As cortinas de estacas espaçadas consistem num conjunto de estacas alinhadas, cujo espaçamento livre máximo entre elas pode atingir 1.50 m, embora, frequentemente, não se ultrapasse os 0.50 m.

A utilização deste tipo de solução obriga a que o solo tenha uma certa coesão (pelo menos a curto prazo), caso contrário torna-se mais difícil obter a estabilidade do solo a ser contido durante o período de escavação e a contenção do solo no espaço entre as estacas.

Para este tipo de solução, geralmente, é necessário preencher o espaço entre as estacas com um material que controle a erosão dos terrenos entre estacas a médio/longo prazo por forma a garantir a estabilidade à cortina. Correntemente recorre-se a revestimento com betão projetado da face de terreno exposta conforme o representado esquematicamente na Figura 2.7.

![Figura 2.7 – Cortina de estacas espaçadas.](image-url)
Devido ao facto do não preenchimento, é manifesto que esta solução não oferece quaisquer garantias de estanqueidade da contenção.

Contudo, este tipo de solução, comparado com outras soluções de cortinas de estacas, oferece algumas vantagens, das quais se destacam:

- São bastante mais económicas por metro de largura de cortina;
- Oferece uma boa flexibilidade relativamente a tipos de estacas e respetivos diâmetros;
- As estacas de grande diâmetro oferecem um aumento de rigidez;
- São facilmente incorporadas em trabalhos permanentes;
- Podem ser dimensionadas para suportar cargas verticais

2.2.3.1.2. Cortina de Estacas Contíguas

Relativamente às cortinas de estacas contíguas, caracterizam-se pelas estacas serem colocadas tangencialmente entre si (Figura 2.8).

![Figura 2.8 – Cortina de estacas contíguas.](image)

Tal como a solução da cortina de estacas espaçadas, estas têm comportamento semelhante na presença de água, ou seja, em estruturas de contenção com água não se tornam uma solução viável.
2.2.3.1.3. Cortina de Estacas Secantes

Por fim, as cortinas de estacas secantes consistem na execução de um grupo de estacas alinhadas entre si, intersectando-se cada estaca com estacas alternadas ao longo da cortina, onde é deixado entre elas um espaço livre de menos de um diâmetro. Esta interceção de estacas é construída por dois tipos de estacas, isto é, estacas fêmeas ou estacas primárias e estacas machos ou estacas secundárias (Figura 2.9).

![Figura 2.9 – Cortina de estacas secantes.](Image)

As estacas primárias, geralmente, são executadas em primeiro lugar e são compostas por um betão plástico de baixa resistência e sem armaduras de forma a facilitar o seu corte para a execução das estacas secundárias, que podem ser de betão armado com armadura ordinária e/ou com perfil metálico.

![Figura 2.10 – Exemplo de uma cortina de estacas secantes.](Image)

Fonte: www.soaresdacosta.com [38]
Tipos de Estruturas de Contenção Flexíveis

Este tipo de solução garante o alinhamento da parede, a estanqueidade da mesma e pode ser executada com comprimentos variáveis entre as estacas consoante a profundidade de escavação.

A Figura 2.10 representa uma cortina de estacas secantes executada numa obra de contenção periférica.

Comparando este tipo de solução com, por exemplo, a solução de uma parede moldada, a execução de uma cortina de estacas secantes é bastante mais versátil podendo ser utilizada na maior parte dos solos e rochas brandas com rendimentos diários superiores sendo ainda por vezes mais económica em termos de custos.

2.2.3.2. Cortina de Estacas de Betão Pré-Fabricado

As estacas de betão pré-fabricadas podem ser executadas com betão armado ou pré-esforçado e caracterizam-se por serem produzidas fora do local da obra, o que permite a obtenção de betões de alta resistência.

As vantagens associadas a este tipo de solução são [8] e [18]:

- Com a pré-fabricação é possível garantir o controlo de qualidade do betão, as dimensões da secção e o posicionamento da armadura;
- Maior garantia de recobrimento das armaduras;
- Boa resistência à compressão e flexão (armadura longitudinal) e ao corte (armadura transversal);
- Presença de água no terreno não afeta a sua construção.

Os inconvenientes apresentados pelos autores são:

- Durante a cravação podem originar movimentos e levantamentos de estacas ou eventuais construções vizinhas;
- Níveis de ruído e vibrações elevados;
- Tempo de cura do betão elevado;
Capítulo 2

- Exigência de cuidados no manuseamento e transporte.

Devido às secções moderadas deste tipo de estacas (inferiores a 40 cm) este tipo de solução geralmente não é empregue pelo facto de, por aquele facto, possuir reduzida resistência.

2.2.3.3. Cortina de Estacas Metálicas

A limitação de resistência das estacas de betão pré-fabricadas pode ser ultrapassada pelo recurso a estacas metálicas (circulares e perfis tipo “I” ou “H”) pelo facto de ter maior liberdade dimensional (diâmetro e espessuras). Contudo esta liberdade, geralmente, conduz a menor competitividade económica quando comparada com a solução de estacas moldadas.

2.2.4. Cortina de Estaca-Prancha

Estacas-pranchas são perfis metálicos que permitem o encaixe entre si, adequados a solos com níveis freáticos elevados, de maneira a construir uma cortina de grande estanqueidade. A estanqueidade é garantida através de ranhuras específicas do tipo macho-fêmea (Figura 2.11). Dependendo do carácter da cortina, isto é, se é de carácter provisório ou definitivo, os perfis metálicos podem ou não ser recuperáveis.
Os perfis mais utilizados para este tipo de contenção são perfis tipo Z ou tipo U, por terem maior módulo de inércia à flexão.

É uma solução viável em terrenos não muito competentes independentemente do nível freático, desde construções subterrâneas, a muros de suporte de terras, encontros de pontes e infraestruturas portuárias. Outra vantagem deste tipo de solução prende-se com o facto de, em termos provisórios, ser possível recuperar os perfis utilizados o que a nível económico é altamente atrativo.

A Figura 2.12 mostra uma obra onde a solução executada é uma cortina de estacas-prancha.
Algumas vantagens da utilização deste tipo de cortinas [8]:

- Utilização variável em qualquer tipo de terreno (desde que com resistência moderada) mesmo com nível freático elevado;
- Rápida execução com ocupação de espaço reduzido;
- Não exigem mão-de-obra nem equipamento muito especializado;
- Fáceis de fazer a união entre perfis;
- Praticamente estanques nas juntas criando uma barreira à passagem da água.

Os inconvenientes associados à utilização de estaca-prancha são [8]:

- Utilização condicionada na presença de blocos de pedra, rocha ou outro tipo de obstáculos que dificultam a sua cravação;
- Suscetibilidade de danificação dos perfis durante a fase de cravação, levando a um aumento de custos;
Tipos de Estruturas de Contenção Flexíveis

- Níveis de ruído e vibração elevados por percussão;
- Dificuldade de manter a verticalidade das estacas-prancha;
- Problemas de corrosão das armaduras a longo prazo;
- Custo elevado dos materiais quando usados numa única utilização.

2.2.5. Sistema Híbrido

Trata-se por sistema híbrido a uma solução que engloba um conjunto de várias soluções, como por exemplo, a utilização de estacas e a técnica de jet-grouting que é conhecida por ser uma técnica de melhoramento de solos.

Genericamente, o jet grouting é uma técnica de tratamento de solos, onde se pretende melhorar as características geotécnicas do solo, através da injeção de calda de cimento a muito altas pressões sem escavação prévia.

A utilização desta técnica tem vindo a desempenhar uma função de grande importância nas construções de Engenharia Civil nas áreas de grande ocupação urbana. A realização de fundações indiretas, reforço e recalçamento de fundações, execução de contenções através de cortinas de colunas de Jet Grouting, realização de enfilagens em bolbo contínuo de tampões de fundo de escavações, assim como no desenvolvimento de infraestruturas viárias, são alguns exemplos onde a utilização desta técnica de tratamento de solo tem sido frequente. [26]

O jet grouting apresenta uma grande versatilidade no melhoramento de solos, uma vez que pode ser aplicado em diversos tipos de terreno, isto é, desde solos incoerentes como areias, seixos e cascalho, a solos coesivos como argilas e siltes.

Esta prática começou, na década de 70 do século XX, no Japão e, inicialmente era concebida apenas com um jato a alta pressão (sistema simples) que posteriormente foi desenvolvido para um sistema de três jatos devido aos três componentes da calda injetada (água, ar e calda de cimento).

Com o decorrer dos anos o jet grouting expandiu para outros continentes, primeiro para Europa e depois para a América do Norte e para a América do Sul. [27]
Capítulo 2

Falcão sintetizou algumas das utilizações da tecnologia em Portugal referindo que se recorreu ao *jet grouting*, em particular, em obras subterrâneas, a partir de 1994, através dos trabalhos realizados na ampliação da rede do Metropolitano de Lisboa e, posteriormente, em 1995 recorreu-se a esta técnica para a consolidação das fundações dos pilares da Ponte de Penacova sobre o rio Mondego. [12]

Obras como a ponte sobre o Rio Arade em Portugal e a estação Antero de Quentel no Brasil são outros exemplos onde se utilizou a técnica de *jet grouting* de forma a melhorar o solo de fundação.

Hoje em dia, os métodos de injeção da calda através de *jet grouting* subdividem-se, essencialmente, em três sistemas de injeção que se baseiam no mesmo processo físico. Os três sistemas são os seguintes e encontram-se esquematizados na Figura 2.13:

- Sistema de Jet 1 ou simples;
- Sistema de Jet 2 ou duplo;
- Sistema de Jet 3 ou triplo.

![Figura 2.13 - Tipologias dos sistemas de jet grouting: sistema simples; sistema duplo; sistema triplo, respectivamente. Fonte: Adaptado de [9].](image-url)
Para a realização do jet grouting é necessário ter em consideração vários parâmetros, como por exemplo, as condições de execução avaliando o local da obra, profundidade do terreno a tratar, a posição do nível freático caso exista, o diâmetro das colunas a realizar, entre outros.

Como qualquer outro método de melhoramento de solos, este também apresenta vantagens e desvantagens aquando da sua utilização. As principais vantagens desta técnica são:

- Versatilidade para a sua utilização em diversos tipos de solo;
- De fácil execução em locais de espaço reduzido e/ou difícil acesso;
- Equipamentos e maquinaria pequenos e não muito pesados se necessário;
- Ruido e vibrações reduzidos;
- Rentável comparado com soluções tradicionais para diâmetros de coluna pequenos.

Relativamente a desvantagens, esta técnica apresenta as seguintes:

- Reduzida capacidade de tração;
- Reduzido controlo de qualidade;
- Risco de levantamento e assentamento do terreno;
- Agressividade química no terreno;
- Elevado custo para diâmetros de coluna grandes.

Devido a estas particularidades, quando usada em cortinas de contenção a tecnologia é, geralmente, associada a outras técnicas como por exemplo cortinas de estacas espaçadas: as estacas colmatam a fraca resistência à flexão das colunas de jet-grouting e estas últimas, quando executadas entre as primeiras, garantem a estanqueidade do sistema em substituição das estacas plásticas convencionais (Figuras 2.14 e 2.15).
Capítulo 2

Figura 2.14 – Cortina de estacas com enchimento em betão pobre.

Figura 2.15 – Cortina de estacas com enchimento em jet grouting.

Devido às características geométricas das cortinas em questão o tipo de técnica empregue é o *jet* tipo 1 (ou simples) em que se injeta somente calda de cimento com elevada pressão e velocidade de forma a misturar-se com o terreno dando origem a um corpo solidificado.
2.3. **SISTEMAS DE APOIO DE CORTINAS FLEXÍVEIS**

Da escavação do terreno no interior da contenção periférica resulta uma variação das ações aplicadas às paredes e do seu próprio funcionamento devido aos impulsos atuantes desequilibrados.

Para que se consiga estabilizar as descompressões instaladas no tardoz das paredes, é necessário recorrer a apoios das mesmas (ancoragens e/ou escoras. O número e constituição dos apoios a colocar e o seu posicionamento dependem principalmente das ações atuantes, mas também da altura de eventuais edifícios vizinhos, do seu afastamento e das suas fundações. A existência de edificações adjacentes conduz a sobrecargas adicionais à cortina, e o cuidado relativo às suas fundações deve-se ao facto de estas não poderem sofrer movimentos.

Neste tipo de estruturas, tanto as ancoragens como os escoramentos de canto poderão ter um papel provisório ou definitivo consoante sejam ou não desativados num período de cerca de 2 anos de vida. Por exemplo, quando são substituídas pelas lajes de cada cave da superestrutura.

2.3.1. **Ancoragens**

Uma ancoragem pode ser definida como um elemento estrutural capaz de transmitir a um estrato portante um esforço de tração que lhe seja aplicado. Hoje em dia, são utilizadas cortinas ancoradas por se tratar de um método económico que oferece bastante segurança. Adicionalmente, uma cortina ancorada torna-se benéfica por reduzir significativamente os esforços de flexão e os deslocamentos a que está sujeita, e ainda a redução da ficha da parede.
Na Figura 2.16 está apresentado um esquema tipo de uma ancoragem pré-esforçada:

![Figura 2.16 – Ancoragem pré-esforçada tipo.](image)

Fonte: Adaptado de [19].

Outra grande característica da execução de paredes com recurso a ancoragens é a utilização do pré-esforço que pode ser exercido nas mesmas utilizando aços de alta resistência selados sob pressão com calda de cimento em maceïs de solos ou rochas.

Em termos gerais, as ancoragens podem ser utilizadas para vários tipos de solo, sendo que são menos eficazes em solos coesivos pela sua reduzida aderência e grande compressibilidade. [34]

A Figura 2.17 representa um dos elementos que constituem uma ancoragem, neste caso um cilindro hidráulico para pré-esforço dos cabos de ancoragem.
A execução de uma ancoragem é desenvolvida em cinco fases essenciais, ou seja, inicia-se com a abertura de um furo na estrutura a ancorar onde, se necessário, deverá ser acompanhada do revestimento das paredes com tubos protetores.

Em seguida é introduzida a armadura no furo com o auxílio de centralizadores para que o seu posicionamento seja no eixo do furo. Após esta fase, procede-se à selagem do espaço anelar com calda de cimento a baixa pressão em todo o comprimento da ancoragem e posteriormente à injeção do bolbo de selagem com calda de cimento a alta pressão. Por último é executado o pré-esforço da armadura bloqueando-o na cabeça da ancoragem.

O tempo de vida útil de uma ancoragem depende de vários fatores como, o processo de furação, a pressão e a composição da injeção da calda de cimento, e, principalmente do material empregue para a proteção da armadura. Assim, este tipo de elementos consideram-se provisórios quando o seu tempo de vida útil não ultrapassa 2 anos, e definitivos para tempos de vida útil superiores. Neste último caso, quando se trata de uma ancoragem de caráter definitivo é necessário uma proteção da armadura ao longo do comprimento livre da ancoragem através de uma bainha ou manga flexível e impermeável.
Na Figura 2.18 ilustra-se um caso de uma obra onde se aplicam ancoragens provisórias, na medida em que são desativadas quando as lajes de cada cave da superestrutura se encontram construídas.

O equilíbrio da força de tração, T, aplicada numa ancoragem é conseguido à custa da mobilização das forças tangenciais na interface bolbo de selagem-macíco envolvente, provocadas pelos correspondentes deslocamentos tangenciais entre o bolbo e o macíco.

2.3.1.1. Dimensionamento de Ancoragens Pré-Esforçadas

Para o dimensionamento de uma ancoragem pré-esforçada não intervêm apenas fatores de ordem resistente, isto é, relativos ao comportamento mecânico dos materiais mas também aspetos como a geometria, nomeadamente, a inclinação e o comprimento total da ancoragem, que afetam o modo de colocação das ancoragens no terreno.

Relativamente à geometria da ancoragem, em termos de funcionamento, a sua inclinação ideal seria na horizontal devido ao valor de pré-esforço ter componente útil horizontal. Questões como a execução do furo e a injeção das caldas de cimento impedem a execução de ancoragens horizontais, e por isso, a sua inclinação deve estar compreendida entre 20 a 45º nunca tendo inclinações inferiores entre 10 a 15º.
A utilização de inclinações superiores aos valores limites é possível justificando-se essa opção através da existência de fundações e caves de edifícios vizinhos, túneis ou condutas, por exemplo. Por outro lado, os estratos mais resistentes e adequados para a colocação do bolbo de selagem encontram-se, na maior parte das vezes, a profundidades inferiores às da cabeça de ancoragem. Por fim, também é importante ter em consideração que, para se atingir determinado estrato é necessário optar por duas situações, isto é, para comprimentos de ancoragem maiores corresponde a valores menores de inclinação ou, caso contrário, para comprimentos de ancoragem mais pequenos a inclinação será maior.

Com base na prática verifica-se que o comportamento eficaz de uma ancoragem pré-esforçada deve obedecer a determinados requisitos geométricos conforme representação da Figura 2.19:

Figura 2.19 – Condiçonalismos a respeitar na localização de ancoragens pré-esforçadas.

Fonte: Adaptado de [19].
Os requisitos da Figura anterior traduzem que os bolbos de selagem devem estar fora da cunha de impulso ativo do solo suportado pela parede ancorada devendo ainda o bolbo de selagem encontrar-se a uma profundidade mínima de 5 a 6 m e a distância mínima a fundações de edifícios vizinhos deverá ser de 3 m. O afastamento mínimo entre bolbos de selagem deverá ser 1.5 m de modo a minimizar a interferência recíproca entre as ancoragens e, consequentemente, eventuais reduções na respetiva capacidade resistente. Por último, o comprimento livre não deve ser inferior a 5 a 6 m, e o comprimento de selagem não deve ser menor que 3 m.

Relativamente ao diâmetro das ancoragens, este depende dos equipamentos de furação disponíveis no mercado mas, genericamente, tem o valor de 15 a 20 cm.

A tração admissível de uma ancoragem, \(T_a \), é o valor máximo correspondente à força que lhe pode ser aplicada durante a vida útil, ou seja, o valor máximo da tração de serviço. O pré-esforço representa, por outro lado, a tração de serviço inicial.

A tração admissível é calculada afetando através dos coeficientes de segurança os valores das tensões correspondentes aos estados limites últimos de resistência e utilização. Assim, os valores mais correntes adotados para os respetivos coeficientes de segurança consoante se tratem de ancoragem provisórias ou definitivas constam no Quadro 2.1:

Quadro 2.1 – Intervalo de coeficientes de segurança mais correntes.
Fonte: Adaptado de [19].

<table>
<thead>
<tr>
<th>Estado Limite</th>
<th>Coeficiente de Segurança</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotura da armadura</td>
<td>1.33 a 1.67</td>
</tr>
<tr>
<td>Deslizamento no contacto selagem-maciço</td>
<td>1.33 a 2.00</td>
</tr>
<tr>
<td>Fluência no contacto selagem-maciço</td>
<td>1.10 a 2.00</td>
</tr>
</tbody>
</table>

No dimensionamento externo de ancoragens uma das referências mais utilizadas consiste no método de Bustamante e Doix “Une méthode pour le calcul des tirants et des micropieux injectes” o qual formula que:

\[
T_L = \pi \times D_s \times L_s \times q_s
\]

(2.1)

onde, \(T_L \) representa a tração limite da ancoragem, \(D_s \) o diâmetro do bolbo de selagem, \(L_s \) o comprimento de selagem e \(q_s \) o atrito lateral unitário expresso ao longo da superfície do bolbo.
Tipos de Estruturas de Contenção Flexíveis

O valor do diâmetro do bolbo de selagem, D_s, depende do diâmetro do furo, D_d, da natureza do solo e do tipo de selagem a executar que pode ser por IRS ou IGU (injeções sem impacto a pressões entre 1 a 2 MPa ou, de outra forma, injeção repetida seletiva ou injeção geral uniforme, respetivamente). A relação entre os respetivos diâmetros é feita majorando o valor do diâmetro do furo por um coeficiente α conforme o tipo e a quantidade de calda a injetar da seguinte forma,

$$D_s = \alpha \times D_d \quad (2.2)$$

O atrito lateral de qualquer elemento estrutural depende de vários parâmetros, principalmente, o tipo de solo envolvente, a sua consistência e compacidade e, no caso das ancoragens, do tipo de selagem a ser utilizada (IRS ou IGU).

2.3.2. Sistema de Escoramento

Outro tipo de solução muito comum para a estabilidade de uma escavação é a utilização de escoramentos metálicos.

A definição do tipo de escoramento a utilizar depende da qualidade do terreno, da profundidade da escavação e das condições locais existentes.

Neste capítulo será exposto todo o processo de cálculo e dimensionamento que foi efetuado para a execução de escoramentos com a utilização de perfis metálicos. Relativamente a estruturas metálicas e às suas respetivas ligações, o Eurocódigo 3 corresponde ao documento normativo mais relevante pelo que todo o estudo efetuado está de acordo com essa norma.

Considerando a possibilidade do EC3 ser omisso ou incompleto para alguns casos particulares de ligações, foi tida em conta a norma complementar francesa NCCI SN044a.

2.3.2.1. Eurocódigo 3: Parte 1-1

O Eurocódigo 3 trata das disposições construtivas e das normas para a construção de estruturas metálicas. Em particular, aborda aspetos relacionados com o método de análise, classificação da estrutura e dos seus elementos e verificações de segurança necessárias ao dimensionamento.
De um modo geral, a análise, o dimensionamento e a verificação de segurança de uma estrutura envolve um certo número de etapas. No projeto em estudo, por se tratar de uma solução como um conjunto de barras e não por ser uma estrutura propriamente dita, o estudo efetuado foi feito barra a barra. Desta forma, as etapas principais envolventes são as que se identificam e descrevem de seguida:

i. **Classificação das secções das barras**
 - Classe 1
 - Classe 2
 - Classe 3
 - Classe 4

ii. **Verificação de segurança das barras**
 - Secções (tensões diretas)
 - Barras (fenómenos de instabilidade)

iii. **Verificação de segurança das ligações**
 - Ligações aparafusadas

2.3.2.1.1. Classificação das Secções

A classificação das secções transversais dos elementos estruturais desempenha um papel fundamental no processo de cálculo e dimensionamento de estruturas metálicas, pois define a forma como a resistência e a capacidade de rotação de uma secção são influenciadas pelos fenómenos de encurvadura local. Assim, o EC 3 classifica as secções transversais em [28]:

Classe 1 – secções onde se pode atingir a resistência plástica e existe capacidade de rotação suficiente para se formar uma rótula plástica;

Classe 2 – secções onde é possível atingir a resistência plástica, mas que possuem uma capacidade de rotação limitada;
Classe 3 – secções onde se pode atingir a resistência elástica (tensão na fibra mais solicitada do elemento), mas não se consegue atingir a resistência plástica devido a possíveis fenómenos de instabilidade local, ou seja, deformação das secções transversais no seu plano sem alteração do eixo da barra;

Classe 4 – secções onde é necessário ter em conta os fenómenos de instabilidade local na determinação da sua resistência à flexão ou compressão. Neste caso, a secção deve sofrer uma redução da resistência que é feita através do cálculo de uma secção efetiva reduzida que será tratada como classe 3.

Esta classificação depende das dimensões da secção e da tensão de cedência dos seus elementos comprimidos e é feita através dos Quadros 5.2 do EC3 Parte 1-1 e dos respectivos diagramas de tensões atuantes. Para o caso prático em estudo apenas foram desenvolvidos cálculos para cantoneiras e para secções tubulares com as expressões da Figura 2.20, tendo em conta o valor da extensão ε.

$$\varepsilon = \frac{235}{\sqrt{fy}}$$ \hspace{1cm} (2.3)

<table>
<thead>
<tr>
<th>Classe</th>
<th>Seção comprimida</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distribuição das tensões na secção (compressão positiva)</td>
</tr>
<tr>
<td></td>
<td>$h/t \leq 15\varepsilon$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classe</th>
<th>Seção em flexão e/ou compressão</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$d/t \leq 50\varepsilon^2$</td>
</tr>
<tr>
<td>2</td>
<td>$d/t \leq 70\varepsilon^2$</td>
</tr>
<tr>
<td>3</td>
<td>$d/t \leq 90\varepsilon^2$</td>
</tr>
</tbody>
</table>

NOTA: Para $d/t > 90\varepsilon^2$ ver a EN 1993-1-8.

Figura 2.20 – Limites máximos das relações largura-espessura para componentes comprimidos.

2.3.2.1.2. Verificação de Segurança das Secções

As verificações de segurança são feitas depois do cálculo dos esforços de dimensionamento e dependem do tipo de análise efetuado. De acordo com o Eurocódigo 3, a verificação de segurança da estrutura contabiliza dois aspectos fundamentais, os quais estão relacionados com a verificação das seções (tensões diretas) e verificação das barras (fenómenos de instabilidade).

Em estados limites últimos, a verificação de segurança das seções tem como objetivo limitar a tensão máxima numa seção à tensão de cedência do aço. Como numa seção atuam, simultaneamente, diferentes tipos de esforços, a verificação terá de ter em consideração o efeito da interação entre os mesmos. Conforme o tipo de esforço a que uma seção está submetida, o EC3 admite para as verificações de segurança o seguinte:

i. Esforço normal (tração e compressão);

ii. Momento fletor;

iii. Esforço transverso;

iv. Momento torsor;

v. Flexão com esforço transverso;

vi. Flexão composta;

vii. Flexão composta com esforço transverso.

Para o projeto em análise neste trabalho, só houve necessidade de se fazer a verificação aos esforços normais e à flexão composta, pois as barras constituintes da estrutura global, ao trabalharem como escoras, sofrem este tipo de esforços. Assim, deve ter-se em consideração às seguintes verificações apresentadas para esforços isolados a tensões normais, considerando y e z como eixos principais centrais da seção:

- Tração

\[
\frac{N_{Ed}}{N_{t,td}} \leq 1.0
\] \hspace{1cm} (2.4)
Por se tratar de secções com furos, deve-se ainda verificar que o valor de cálculo normal resistente é o menor dos dois valores seguintes:

\[
N_{pl,Rd} = \frac{A \cdot f_y}{\gamma M_0}
\] \hspace{1cm} (2.5)

\[
N_{u,Rd} = \frac{0.9 \cdot A_{net} \cdot f_u}{\gamma M_2}
\] \hspace{1cm} (2.6)

onde \(N_{Ed}\) e \(N_{u,Rd}\) estão associados a valores de cálculo de esforço atuante (para uma dada combinação de ações) e resistente, respectivamente, numa dada secção.

Quanto à secção com furos, \(A\) e \(A_{net}\) correspondem à área e a área efetiva de uma secção transversal, \(f_y\) e \(f_u\) a tensão de cedência e última do material e \(N_{pl,Rd}\) e \(N_{u,Rd}\) são o esforço resistente plástico e esforço resistente último, respectivamente. Por fim, \(\gamma M_0\) e \(\gamma M_2\) são os coeficientes de segurança das secções de qualquer classe e de secções tracionadas.

- **Compressão**

\[\frac{N_{Ed}}{N_{e,Rd}} \leq 1.0\] \hspace{1cm} (2.7)

Neste caso, as verificações diferem consoante a classe da secção transversal, isto é:

- **Classe 1, 2 ou 3**: \(N_{e,Rd} = \frac{A \cdot f_y}{\gamma M_0}\) \hspace{1cm} (2.8)

- **Classe 4**: \(N_{e,Rd} = \frac{A_{eff} \cdot f_y}{\gamma M_0}\) \hspace{1cm} (2.9)

Tal como nas designações dos parâmetros de tração, \(Ed\) e \(Rd\) estão associados a valores de cálculo de esforço atuante e resistente. \(A_{eff}\) é a área efetiva da secção transversal.

- **Flexão Composta**

Esta verificação apenas foi efetuada aos perfis metálicos tubulares, por sofrerem, para além de esforços normais, momento fletor. Assim, o momento atuante deve ser menor que o momento resistente plástico provocado do esforço normal.

\[M_{Ed} \leq M_{N,Rd}\] \hspace{1cm} (2.10)
Para secções tubulares onde não seja necessário ter em conta os furos nas ligações, podem utilizar-se expressões como:

\[
M_{N,Rd} = M_{pl,Rd} \frac{1 - n}{1 - 0.5 \cdot a}
\]

(2.11)

\[
a = \frac{A - 2 \cdot d \cdot t}{A}
\]

(2.12)

onde, \(n\) é o número de furos ao longo do perfil, \(A\), \(d\) e \(t\) são, respectivamente, a área, diâmetro e espessura do perfil tubular.

2.3.2.2. Verificação de Segurança das Barras

A verificação de segurança de uma barra tem como objetivo limitar um esforço associado a tensões normais a um valor limite que tem em consideração a influência de possíveis fenômenos de instabilidade global da barra. Para esses efeitos, os esforços associados a tensões normais são, o esforço normal e o momento fletor e a instabilidade global encontra-se interligada à encurvadura da barra por flexão e/ou flexão-torção, e a encurvadura lateral por flexão-torção.

Inicia-se esta verificação das barras através

\[
\frac{N_{Ed}}{N_{b,Rd}} \leq 1.0
\]

(2.13)

onde \(N_{b,Rd}\) é o valor de cálculo do esforço axial da barra tendo em consideração da resistência à encurvadura por flexão, onde, para barras de classe 1, 2 e 3 é dado por

\[
N_{b,Rd} = \frac{\chi \cdot A \cdot f_y}{\gamma_{M1}}
\]

(2.14)

E para barras de classe 4, o valor do esforço axial é dado por

\[
N_{b,Rd} = \frac{\chi \cdot A_{eff} \cdot f_y}{\gamma_{M1}}
\]

(2.15)

onde \(\chi\) é o coeficiente de redução quem tem em consideração a influencia da estabilidade da barra e \(\gamma_{M1}\) é o coeficiente de segurança. O coeficiente de redução é dado pela expressão
Tipos de Estruturas de Contenção Flexíveis

\[\chi = \frac{1}{\Phi + \sqrt{\Phi^2 - \dot{\lambda}^2}} \leq 1 \quad (2.16) \]

\[\Phi = 0.5 \times [1 + \alpha \times (\dot{\lambda} - 0.2) + \dot{\lambda}^2] \quad (2.17) \]

onde \(\dot{\lambda} \) é a esbelteza normalizada da barra e \(\alpha \) é o fator de imperfeição correspondente à curva de encurvadura. A Tabela 6.2 do EC3 (parte 1.1) permite definir o valor do parâmetro de imperfeição \(\alpha \) a utilizar consoante o tipo de aço, configuração e geometria da secção, processo de fabrico e eixo de encurvadura. No caso de secções em cantoneira, utiliza-se sempre a curva b e o parâmetro \(\alpha=0.34 \), no caso de secções tubulares (no estudo em questão consideram-se que os perfis são laminados a quente) utiliza-se a e o parâmetro \(\alpha=0.21 \) (Tabela 6.1 do EC3).

Para barras de classe 1, 2 e 3 a esbelteza normalizada \(\ddot{\lambda} \) é definida por

\[\ddot{\lambda} = \sqrt{\frac{A \times f_y}{N_{cr}}} \quad (2.18) \]

enquanto para barras de classe 4 define-se

\[\ddot{\lambda} = \sqrt{\frac{A_{eff} \times f_y}{N_{cr}}} \quad (2.19) \]

onde \(N_{cr} \) é o valor da carga crítica associado à instabilidade da barra, onde, para o caso em estudo, ocorre por flexão \((N_{cr} = N_{cr,F}) \). Em outros casos possíveis, é necessário ter-se em atenção ao valor da carga critica, pois também pode ocorrer por torção \((N_{cr}=N_{cr,T}) \) e/ou flexão-torção \((N_{cr}=N_{cr,FT}) \).

O valor da carga crítica pode ser calculado pela fórmula de Euler, isto é,

\[N_{cr,F,y} = \frac{\pi^2 \times E \times I_y}{L_{cr,y}^2} \quad (2.20) \]

\[N_{cr,F,z} = \frac{\pi^2 \times E \times I_{yz}}{L_{cr,z}^2} \quad (2.21) \]

onde \(N_{cr,F,z} \) e \(N_{cr,F,y} \) refletem as cargas críticas de flexão em torno dos eixos \(y \) (encurvadura no plano \(x-z \)) e \(z \) (encurvadura no plano \(x-y \)) e, respetivamente.
Os comprimentos de encurvadura respeitantes aos eixos y e z dependem das condições de apoio da barra, o que para o caso em estudo, só foram estudados dois casos, isto é, para

\[L_{cr} = L \]
\[L_{cr} = \frac{1}{2} \times L \]

(2.22)
(2.23)

2.3.3. Sistemas de Apoio Alternativos

Além das ancoragens e dos escoramentos identificam-se soluções de apoio alternativas cuja seleção dependerá, essencialmente, das características geométricas, tecnológicas e estruturais da contenção, da geologia e da geotecnia do local bem como das condicionantes da envolvente, nomeadamente de exigências de deformações.

2.3.3.1. Sistema Top-Down

Neste sistema, na construção da estrutura enterrada efetua-se o travamento das paredes moldadas através da construção das lajes à medida que se processa a escavação, isto é, todo o processo é feito de cima para baixo (Figura 2.21).

Figura 2.21 – Utilização em obra do sistema top-down.
Fonte: [www.soaresdacosta.com][38]

O faseamento construtivo deste método começa com a instalação das paredes em toda a periferia da obra. Em seguida, com a parede instalada é feita a escavação até um pouco abaixo do nível da laje superior da estrutura subterrânea. A laje superior é então construída (em geral parcialmente)
tornando-se no apoio em toda a área da escavação. Através de aberturas deixadas na laje será possível a remoção de materiais escavados posteriormente até se atingir a cota final de projeto. De forma sucessiva repete-se a sequência até à cota final da escavação.

Em seguida, apresenta-se uma figura esquematizada (Figura 2.22) com processo construtivo deste método de escoramento de obras de escavação.

Figura 2.22 - Processo de execução do sistema top-down.

Fonte: Adaptado de [13].
2.3.3.2. Exemplos de Sistemas Especiais

Nesta secção referem-se dois casos de estruturas de contenção em que se recorreu a sistemas de apoio especiais e inovadoras para resolução de situações de projeto e/ou de obra: um dos sistemas foi aplicado em Portugal no início da década de 80 e o outro na Suíça em 2001.

Caso 1: “Anoragens Virtuais” - Estrutura de suporte provisória da Av. 5 de Outubro em Lisboa

O sistema implementado resultou da necessidade de fazer face à impossibilidade ocorrida na fase de obra para implementação de uma solução convencional de ancoragens pré-esforçadas ao terreno. Para este caso foi concebida pelo Engenheiro uma solução inédita no domínio das estruturas de suporte de terras constituída por cinco escoras treliçadas em aço ligadas por um tirante poligonal ancorado nos seus extremos correspondentes aos cunhais da parede moldada periférica. O tirante ao ser pré-esforçado com 2100 kN provocou forças de reação nas escoras que assim transmitiram à parede moldada forças variáveis entre 300 e 350 kN que garantiram a estabilidade da cortina. O pré-esforço foi aplicado por macacos hidráulicos entrepostos entre o tirante e as cabeças das escoras de forma gradual e controlada (Figura 2.23 e 2.24).

Deste modo, estas “anoragens virtuais” (ou “escoras voadoras”) permitiram o desenvolvimento da escavação e posterior conclusão da superestrutura do edifício.

![Figura 2.23 – Vista do sistema de “anoragens virtuais”.
Fonte: Luís Lousada Soares.](image-url)
Caso 2: “Roda de bicicleta” - Estrutura de suporte provisória em Genebra, Suíça

Este caso foi desenvolvido pela empresa Spie Fondations e é descrito em pormenor na revista Travaux, nº 796 de Abril de 2003. Corresponde a um sistema de escoramento em forma de “roda de bicicleta” constituído por um “anel” central em betão armado pré-fabricado e por “raios” em tubos metálicos.

Este sistema inovador foi implementado no projeto de uma contenção periférica para a construção de 4 caves destinadas a uma unidade fabril localizada na zona industrial de Plan-les-Ouates localizada nas proximidades do centro de Genebra, Suíça.

Esta solução inédita resultou do facto da escavação possuir grandes dimensões em planta, e por conseguinte, inviabilizar uma solução de escoramento tradicional e, por outro lado, da natureza aluvionar da geologia local impossibilitar igualmente a execução de ancoragens pré-esforçadas ao terreno. Neste enquadramento foi concebida a solução ilustrada na Figura 2.25 em que se tira partido do efeito estabilizador da resistência à compressão do anel em betão pré-fabricado. O anel é materializado por uma viga em betão pré-fabricado com a secção de 4 m² e os “auros” são executados por tubos metálicos com o diâmetro de 1,02 m e que ligam a parede moldada periférica ao “anel”
central. Este elemento é ainda apoiado em microestacas verticais que asseguram a absorção das cargas verticais nele geradas.

a) Vista geral solução “roda de bicicleta”. b) Vista interior da solução “roda de bicicleta”.

Figura 2.25 – Vistas do sistema de “roda de bicicleta”.

Fonte: Adaptado de [31].
3. **Regulamentos e Softwares**

No capítulo anterior foram apresentadas as principais disposições regulamentares relativamente ao Eurocódigo 3 – Parte 1-1. No entanto, tendo em vista a utilização da norma francesa NCCI SN044a, nos cálculos objeto dos estudos desenvolvidos no âmbito do trabalho neste capítulo serão expostas as suas disposições regulamentares implementadas e posteriormente serão abordados os softwares de cálculo utilizados para o estudo deste projeto.

Todo o dimensionamento efetuado, quer pelo Eurocódigo quer pela norma francesa NCCI, mencionado neste capítulo, foram feitos tendo em conta os coeficientes parciais de segurança de forma a contabilizar os valores característicos da resistência, quer em termos de instabilidade como de rotura, das secções transversais, dos elementos e das ligações. Assim, os valores utilizados nos cálculos foram os seguintes:

- \(\gamma_{M0} = 1.00 \) – Resistência das secções transversais de qualquer classe;
- \(\gamma_{M1} = 1.00 \) – Resistência dos elementos em relação a fenómenos de instabilidade;
- \(\gamma_{M2} = 1.25 \) – Resistência à rotura das secções transversais tracionadas em zonas com furos de ligação;
- \(\gamma_{M2} = 1.25 \) – Resistência dos parafusos.
Capítulo 3

3.1. NCCI SN044A

A norma francesa NCCI refere-se aos procedimentos de projeto e cálculo de ligações entre perfis metálicos e chapas aparafusadas. As ligações com parafusos, geralmente, são adequadas à montagem no local das peças pré-fabricadas da estrutura.

As ligações de elementos comprimidos, de forma a garantir a transferência desses esforços, deve satisfazer duas condições fundamentais, isto é, assegurar um bom contacto entre as superfícies e o alinhamento correto dos elementos para evitar uma excentricidade que transmita momentos imprevistos.

De forma esquemática (Figura 3.1) para o dimensionamento da estrutura de ligações entre tubos circulares e as chapas a norma apresenta:

![Figura 3.1 - Parâmetros geométricos pela norma SN044a para tubos circulares. Fonte: Adaptado de NCCI SN044a (página 3). [21]](image)

onde, e_1 e e_2 são a distância entre o eixo do parafuso e a parede do perfil circular e a distância entre o eixo do parafuso e o extremo exterior da chapa metálica, respectivamente, t_p é a espessura da chapa, p_2 o espaçamento entre os parafusos e d_1 o diâmetro da secção circular.
É importante referir que os parafusos se encontram dispostos radialmente em torno do perfil circular, a distâncias uniformes.

De modo a realizar corretamente as ligações é necessário atender a certos critérios:

- O espaçamento entre parafusos deve ser maior ou igual a \(2.2d_0 \) e o menor entre \(\{14t; 200\,mm\} \), onde \(d_0 \) é o diâmetro do furo e \(t \) a espessura da chapa mais fina;

- Utilização no mínimo de 4 parafusos;

- O diâmetro do furo, \(d_0 \), deve respeitar o seguinte conforme o diâmetro do parafuso, \(d \):
 - \(d_0 = d + 2\,mm; d \leq 24\,mm \)
 - \(d_0 = d + 3\,mm; d > 24\,mm \)

- A distância \(e_1 \) deve ser o mínimo possível, devendo ser um valor entre \(1.5d \) a \(2d \);

- As distâncias \(e_1 \) e \(e_2 \) devem ser, pelo menos, iguais a \(2.2d_0 \);

- A distância entre a solda e a porca deve ser superior a 5 mm.

Para garantir a segurança deste tipo de ligações é necessário verificar três parâmetros, isto é, a resistência plástica da chapa, ao desgaste do parafuso e à soldadura.

3.1.1. Verificação da Resistência Plástica da Chapa

O valor de cálculo do esforço normal exercido na extremidade da chapa deve satisfazer a seguinte condição:

\[
N_{1,Ed} \leq \frac{t_p^2 \cdot f_{yp} \cdot \pi \cdot f_3}{2 \cdot \gamma_{M0}}
\]

onde \(N_{1,Ed} \) está associado ao valor de cálculo de esforço atuante (para uma dada combinação de ações), \(t_p \) é a espessura da chapa e \(f_{yp} \) é a tensão de cedência da chapa. A norma relaciona o esforço normal com outros parâmetros, os quais:

\[
f_3 = \frac{1}{2 \cdot k_1} \cdot [k_3 + (k_3^2 - 4 \cdot k_1)^{0.5}]
\]
Capítulo 3

\[
k_1 = \ln \frac{r_2}{r_3}
\]

(3.3)

\[
r_2 = \frac{d_1}{2} + e_1
\]

(3.4)

\[
r_3 = \frac{d_1 - t_1}{2}
\]

(3.5)

\[
k_3 = k_1 + 2
\]

(3.6)

3.1.2. Verificação da Resistência do Parafuso

O valor de cálculo do esforço normal exercido na extremidade da chapa deve satisfazer a seguinte condição:

\[
N_{1,Ed} \leq \frac{n \cdot F_{t,Ed}}{1 - \frac{1}{f_3} + \frac{1}{f_3 \cdot \ln r_3}}
\]

(3.7)

onde \(N_{1,Ed}\) está associado ao valor de cálculo de esforço atuante (para uma dada combinação de ações), \(n\) é o número de parafusos e \(F_{t,Ed}\) o valor de cálculo da resistência à tração por parafuso. A norma relaciona este esforço normal com outros parâmetros, os quais:

\[
r_1 = \frac{d_1}{2} + e_1 + e_{eff}
\]

(3.8)

\[
e_{eff} = \min(e_2; 1.25 \cdot e_1)
\]

(3.9)

\[
r_2 = \frac{d_1}{2} + e_1
\]

(3.10)
3.1.3. Soldadura

O perfil de seção circular deve estar soldado sobre a integridade do seu perímetro, normalmente, através de uma soldadura de ângulo. No entanto, se a espessura da garganta ultrapassar 8 mm, deve-se utilizar uma soldadura face a face com ângulos adicionais de forma a fazer uma penetração superficial, tornando-se numa solução mais económica.
3.2. **AUTODESK ROBOT STRUCTURAL ANALYSIS**

O Autodesk Robot Structural Analysis 2016 foi o programa de cálculo automático utilizado para a modelação da estrutura e a verificação das suas ligações. Trata-se de um *software* bastante utilizado na Engenharia Civil, quer para construções em betão armado como em estruturas metálicas, onde é possível a análise estrutural com interface tridimensional.

Utiliza o método dos elementos finitos e permite efetuar análises lineares e não-lineares estáticas e dinâmicas. Possibilita ainda a realização de verificações regulamentares com base nos vários códigos de construção que dispõe na sua base de dados, dos quais se podem destacar os Eurocódigos, bem como o fornecimento de informações para o dimensionamento das estruturas, como por exemplo, quantidades de armadura a dispor nos elementos.

Tem pré-definidos modelos de cálculo para vários tipos de elementos estruturais, bidimensionais ou tridimensionais. O número de graus de liberdade destes modelos variam em função do tipo de elemento a analisar (Figura 3.2), sendo que o modelo utilizado foi o *Shell* (assinalado na figura).

![Figura 3.2 - Tipos de cálculos do Robot Structural Analysis 2016.](image)
A introdução de dados pode ser feita no próprio programa ou através da importação de um ficheiro em formato *dxf* ou *dwg* (AutoCad). No caso, foi feita a importação de um desenho em AutoCad, o que permitiu, posteriormente, a edição dos elementos constituintes da estrutura, como, por exemplo, as características das secções e dos materiais atribuídos aos elementos da estrutura.

A apresentação de resultados é feita através de mapas, diagramas ou em tabelas com a descrição detalhada dos valores atuantes em cada ponto/nó. Outra opção bastante útil para a averiguar possíveis erros na criação do modelo ou na definição das ações é a possibilidade de visualização da deformada da estrutura em 3D. [25]

A utilização do programa foi efetuada de forma a validar as estruturas concebidas no âmbito ao caso de obra estudado.

Salienta-se que foi necessário recorrer à última versão do programa (Robot Structural Analysis 2016) pois as versões anteriores não tinham a possibilidade das tipologias de ligação necessárias para o projeto em causa. Assim, através da utilização da última versão do programa foi possível verificar uma das ligações presentes nos estudos efetuados. De uma forma geral as soluções concebidas para o projeto têm três tipos de ligação entre perfis: ligação entre colunas metálicas e parede moldada, ligação entre coluna metálica e perfil tubular metálico e ligação entre tubos circular e/ou colunas metálicas.

Neste caso concreto, o Robot, mesmo sendo a ultima versão disponível, tornou-se num programa limitado de utilizar em termos de cálculo das ligações, por ser apenas possível o cálculo e validação das ligações entre tubos metálicos através de chapas aparafusadas. Para além da possibilidade do estudo de uma das ligações não foi possível que o seu estudo fosse feito como o pretendido por não ser possível a escolha de uma abertura entre as chapas metálicas. Este tema será abordado e detalhado no capítulo seguinte onde serão apresentados os resultados do estudo.
4. **PROJETO EM ESTUDO**

Neste Capítulo apresenta-se o projeto estudado no âmbito do estágio. O caso analisado corresponde à contenção periférica da escavação de um edifício na Rua Frederico Welwitch, Luanda, Angola, denominado por “Edifício Vandunen”.

Neste capítulo serão expostas as metodologias de estudo e construção previstas no projeto de execução para a realização das escavações no interior da parede moldada do edifício; serão apresentados os condicionalismos locais existentes à sua implementação e por fim um estudo de várias tipologias de escoramentos alternativos.
4.1. **Descrição Geral da Obra**

O edifício projetado tem no total 21 pisos, sendo 16 pisos acima do piso 0, com terraço e cobertura, e 5 pisos subterrâneos de caves, ocupando uma área em planta de aproximadamente 720 m².

O Projeto de Escavação e Contenção Periférica prevê a execução, em toda a periferia da obra, de uma parede moldada com 25 m de altura total e 60 cm de espessura, de forma a realizar uma escavação com uma profundidade total de cerca de 17 m. Prevê-se que a parede moldada seja apoiada durante a fase construtiva em 5 níveis de ancoragens provisórias pré-esforçadas ao terreno com um pré-esforço de serviço de 660 kN associadas a um sistema de escoramento metálico posicionado nas proximidades dos cantos da parede. Os perfis propostos para a materialização dos escoramentos metálicos são perfis do tipo HEB 200 contraventados com perfis do tipo HEB 140.

O projeto prevê ainda o apoio definitivo da parede moldada de contenção por recurso às lajes enterradas do edifício.

Na Figura 4.1 está apresentada a solução, em planta e em corte, definida no Projeto de Execução para um piso tipo da cave do edifício em estudo, sendo possível verificar a presença de ancoragens na periferia da parede de contenção e o escoramento metálico de canto. Em anexo encontram a peça desenhada relativa à solução base do projeto (Peça Desenhada PD 1).

![Figura 4.1 – Solução construtiva do projeto de execução em estudo.](image-url)
Relativamente aos condicionalismos da obra, a contenção periférica da escavação do edifício em causa apresenta algumas particularidades que, por um lado se devem à geometria da obra, e por outro lado, à exigência da sua envolvente.

O edifício insere-se no meio de um centro urbano, e encontra-se rodeado de vários edifícios de habitação, de vários pisos, e ruas muito movimentadas, como evidencia a Figura 4.2. Assim, perante a profundidade a executar de escavação e da sua localização as soluções de contenção tornam-se fortemente condicionadas pelo ambiente onde a obra se insere.

![Figura 4.2 – Localização do edifício em estudo, Luanda.](www.google.pt/maps)
4.2. **SOLUÇÃO BASE**

4.2.1. **Caracterização Geológica e Geotécnica**

A caracterização geológico-geotécnica do local foi efetuada mediante a execução de 5 sondagens mecânicas a acompanhadas da realização de ensaios de resistência do tipo SPT. Os furos de sondagens atingiram uma profundidade máxima de 29.5 m. Adicionalmente foram instalados piezómetros de tubo aberto para acompanhamento da evolução do nível de água.

Com base nos resultados obtidos no âmbito dos trabalhos referidos fez-se uma análise estatística dos mesmos para posterior correlação com a compacidade do terreno como mostra o Quadro 4.1:

<table>
<thead>
<tr>
<th>Prof. (m)</th>
<th>N_p</th>
<th>Composto</th>
<th>N_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>Média</td>
<td>4</td>
<td>Sólta</td>
<td>5</td>
<td>Sólta</td>
<td>6</td>
<td>Sólta</td>
<td>7</td>
<td>Sólta</td>
<td>8</td>
<td>Sólta</td>
<td>9</td>
<td>Sólta</td>
<td>10</td>
<td>Sólta</td>
<td>11</td>
<td>Sólta</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>Média</td>
<td>31</td>
<td>Compacted</td>
<td>22</td>
<td>Compacted</td>
<td>31</td>
<td>Compacted</td>
<td>31</td>
<td>Compacted</td>
<td>22</td>
<td>Compacted</td>
<td>31</td>
<td>Compacted</td>
<td>22</td>
<td>Compacted</td>
<td>31</td>
<td>Compacted</td>
<td>22</td>
</tr>
<tr>
<td>3</td>
<td>60</td>
<td>Média</td>
<td>60</td>
<td>Compacted</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>90</td>
<td>Média</td>
<td>80</td>
<td>Compacted</td>
<td>115</td>
<td>Compacted</td>
<td>80</td>
<td>Compacted</td>
<td>115</td>
<td>Compacted</td>
<td>80</td>
<td>Compacted</td>
<td>115</td>
<td>Compacted</td>
<td>80</td>
<td>Compacted</td>
<td>115</td>
<td>Compacted</td>
<td>80</td>
</tr>
<tr>
<td>5</td>
<td>115</td>
<td>Média</td>
<td>120</td>
<td>Compacted</td>
<td>125</td>
<td>Compacted</td>
<td>120</td>
<td>Compacted</td>
<td>125</td>
<td>Compacted</td>
<td>120</td>
<td>Compacted</td>
<td>125</td>
<td>Compacted</td>
<td>120</td>
<td>Compacted</td>
<td>125</td>
<td>Compacted</td>
<td>120</td>
</tr>
<tr>
<td>6</td>
<td>150</td>
<td>Média</td>
<td>155</td>
<td>Compacted</td>
<td>160</td>
<td>Compacted</td>
<td>155</td>
<td>Compacted</td>
<td>160</td>
<td>Compacted</td>
<td>155</td>
<td>Compacted</td>
<td>160</td>
<td>Compacted</td>
<td>155</td>
<td>Compacted</td>
<td>160</td>
<td>Compacted</td>
<td>155</td>
</tr>
<tr>
<td>7</td>
<td>160</td>
<td>Média</td>
<td>165</td>
<td>Compacted</td>
<td>170</td>
<td>Compacted</td>
<td>165</td>
<td>Compacted</td>
<td>170</td>
<td>Compacted</td>
<td>165</td>
<td>Compacted</td>
<td>170</td>
<td>Compacted</td>
<td>165</td>
<td>Compacted</td>
<td>170</td>
<td>Compacted</td>
<td>165</td>
</tr>
<tr>
<td>8</td>
<td>170</td>
<td>Média</td>
<td>175</td>
<td>Compacted</td>
<td>180</td>
<td>Compacted</td>
<td>175</td>
<td>Compacted</td>
<td>180</td>
<td>Compacted</td>
<td>175</td>
<td>Compacted</td>
<td>180</td>
<td>Compacted</td>
<td>175</td>
<td>Compacted</td>
<td>180</td>
<td>Compacted</td>
<td>175</td>
</tr>
<tr>
<td>9</td>
<td>180</td>
<td>Média</td>
<td>185</td>
<td>Compacted</td>
<td>190</td>
<td>Compacted</td>
<td>185</td>
<td>Compacted</td>
<td>190</td>
<td>Compacted</td>
<td>185</td>
<td>Compacted</td>
<td>190</td>
<td>Compacted</td>
<td>185</td>
<td>Compacted</td>
<td>190</td>
<td>Compacted</td>
<td>185</td>
</tr>
</tbody>
</table>

Para simplificar a análise do terreno foi feito um gráfico que relaciona a profundidade de furação com o número de pancadas do ensaio SPT. Através do Gráfico 4.1 foi possível visualizar distintamente as três classes de solo existentes em obra.
Efetivamente do Gráfico é possível verificar as três zonas distintas de solo: até à profundidade de cerca de 10 m é possível afirmar que o solo é um solo de baixa consistência (trata-se de um solo solto); entre 10 e 20 m de profundidade trata-se de um solo medianamente compacto; e abaixo dos 20 m estamos perante um solo muito compacto.

Em seguida foram atribuídos valores típicos de peso específico e ângulo de atrito ao solo caracterizado (Quadro 4.2) para posterior conhecimento de impulsos de terras a considerar de forma a perceber o tipo de esforços a contabilizar na estrutura de contenção a estudar.

<table>
<thead>
<tr>
<th>Solos</th>
<th>(\gamma) (kN/m(^3))</th>
<th>(\varphi')</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solo 1 - Solto/Médio</td>
<td>18,6</td>
<td>30</td>
</tr>
<tr>
<td>Solo 2 - Compacto</td>
<td>20</td>
<td>34</td>
</tr>
<tr>
<td>Solo 3 - Muito Compacto</td>
<td>21</td>
<td>37</td>
</tr>
</tbody>
</table>

Em causa, como fora mencionado, está o dimensionamento de estruturas de contenção periférica e os seus sistemas de apoio de forma a conceber uma solução para os sistemas de apoio que seja reutilizável para outras obras de forma a rentabilizar o custo inicial de fabrico. De forma expedita será analisado o custo diretamente associado aos sistemas de apoio que abrange a quantidade de aço utilizada para cada tipo de solução dimensionada, comparando a escavação do projeto em causa.
(trata-se de uma escavação de forma mais ou menos retangular) com um projeto idealizado de uma escavação quadrada. Assume-se assim que os restantes custos, resultantes quer da parede periférica quer da escavação propriamente dita, são constantes e invariáveis de alternativa para alternativa de sistema de apoio.

No projeto em estudo a estrutura de suporte de terras é do tipo Parede Moldada suportada por um sistema de apoio através de ancoragens.

Numa fase inicial do estudo foram reanalisados os ensaios em laboratório em “in situ” e recalculado o sistema de apoio das ancoragens. Em seguida, foi feita a análise do projeto de contenção considerando a parede moldada com as suas características mas alternando os sistemas de apoio. Foram calculados sistemas de apoio como escoramento linear, colunas metálicas e treliças.

Quanto aos perfis a serem utilizados neste tipo de obra, optou-se pelo estudo de perfis tubulares circulares e por torres em agrupamento de cantoneiras, pois assim conseguem-se obter conjuntos que resistem a grandes valores de esforços com pesos mais pequenos quando comparados com perfis do tipo I ou H.

Os softwares utilizados para a realização de cálculos, dimensionamentos e desenhos foram o Microsoft Excel, Ftool, Robot Structural Analysis e AutoCAD.

4.2.2. Impulsos Atuantes

De um modo geral, uma estrutura de suporte de terras é definida com o principal objetivo de estabelecer em segurança a transição entre as duas superfícies do terreno a cotas diferentes, suportando o maciço através de forças predominantemente horizontais, de forma a impedir o seu escorregamento.

Designa-se por impulso à resultante das pressões laterais induzidas pelo solo e/ou por água e cargas externas à estrutura de suporte. Este impulso depende não só do solo envolvente da estrutura como também do comportamento e das características da mesma, isto é, a grandeza das pressões laterais existentes, ou que se venham a desenvolver, depende da resistência e das propriedades tensão-deformação do material da estrutura de suporte, e das deformações posteriores devidas a possíveis movimentos laterais.
Quando não existe qualquer tipo de deformação ou deslocamento da estrutura, encontramo-nos perante um impulso em repouso. Do mesmo modo, quando a estrutura se movimenta afastando-se do solo sem mobilizar tensões entre a estrutura e o solo trata-se de um impulso ativo. Caso contrário, se a estrutura se desloca contra o terreno mobilizando tensões de compressão, mobiliza-se o impulso passivo. Assim, é necessário encontrar um estado de equilíbrio limite das estruturas de suporte de terras.

Neste contexto, teoricamente, a avaliação dos impulsos depende, além do conhecimento das propriedades dos solos com que ou sobre os quais estas são realizadas, mas também do nível de deformação expectável para as estruturas.

No caso de estudo as forças aplicadas à estrutura foram calculadas a partir dos respetivos impulsos de terras. Na sua avaliação foram admitidos os métodos de cálculo de Rankine e a consideração dos diagramas aparentes de Terzaghi e Peck para as várias situações de apoio da parede de contenção.

A verificação/dimensionamento interno da parede moldada e dos respetivos apoios desenvolveu-se a partir de um diagrama de tensão horizontal resultante e considerado uniforme com uma tensão horizontal característica resultante igual a $57.35 \, kN/m$.

Nos cálculos considerou-se o faseamento construtivo da escavação apresentando-se de seguida gráficos de síntese dos esforços e deformações resultantes da sequência construtiva, mostrando a relação entre esforços e deformada com a profundidade de escavação, e consequente, comprimento vertical da parede. Nesses gráficos considera-se a parede coincidente com o eixo vertical (profundidade), e que do lado direito se encontram as terras e os respetivos impulsos de terras e do lado esquerdo a execução da escavação.
Capítulo 4

Gráfico 4.2 – Relação entre os momentos produzidos na parede e a profundidade.

Relativamente ao gráfico de momentos, Gráfico 4.2, verifica-se um aumento progressivo de valores ao longo da profundidade da escavação. Numa fase inicial, até à profundidade de 5 m, o momento gerado na parede toma o valor de -593.5kN.m no ponto 3.5 m.

Nas fases que se seguem, os valores do momento às profundidades dos sistemas de apoio, a 5.5 m, 8.5 m, 11.5 m e 14.5 m, tomam valores positivos de 413.2kN.m, 576.8kN.m, 658.8kN.m e 755.5kN.m, respectivamente.

Gráfico 4.3 – Relação entre os valores de esforço de corte produzidos na parede e a profundidade.
Analogamente, o gráfico de esforço transverso ou de corte, Gráfico 4.3, tem os seus maiores valores à direita da parede. Neste caso, o pico encontra-se na primeira fase de escavação, a 3.5 m o valor de esforço de corte é de 603kN, e nas duas fases seguintes diminui e depois volta a aumentar (a 5.5 m o esforço transverso é de 467.3 kN; a 9.5 m é de 319.5 kN; a 11.5 m é de 353.1 kN e por fim, a 14.5 m é de 442.6 kN).

Por último, a deformada, representada no Gráfico 4.4, que a parede sofre ao longo da execução da escavação não difere muito dos 3 mm ao longo de toda a parede e em todas as fases da sequência construtiva. A fase inicial, mais uma vez, é que a tem maior valor, cerca de 3.6 mm, mas desta vez no topo da parede. Nas fases dois e três que se seguem, a deformada toma os valores maiores a 20.5 m de profundidade com os valores de 2.9 e 3 mm, respectivamente. Na fase quatro, não muito distante das anteriores, a 21.5 m de profundidade a deformada é de 3 mm, e, por último, na fase final de escavação, a deformada da parede de contenção é maior na zona superior, ou seja, a 6.5 m com 2.8 mm.

Em geral, a zona do primeiro apoio da parede toma sempre os maiores valores por ter uma distância até à cota superior de 3.5 m (comportamento em consola da parede) enquanto os restantes resultam de vãos da ordem dos 3 m.
4.2.3. Retro Análise da Solução de Projeto

A análise dos sistemas de apoio alternativos iniciou-se pela retro análise da solução de projeto constituída por ancoragens pré-esforçadas ao terreno.

Tendo em conta espaçamentos horizontal e vertical para as ancoragens, de 2.50 e 3.00 m, respectivamente, em resultado da modelação dos painéis da parede moldada e das lajes definitiva obteve-se um total de 28 ancoragens por casa nível de escavação (Quadro 4.3), isto é, no total, utilizaram-se 140 ancoragens para a parede de contenção.

Quadro 4.3 – Contabilização de ancoragens para um nível de escavação.

<table>
<thead>
<tr>
<th>Perímetro de Contenção</th>
<th>Nº Ancoragens</th>
</tr>
</thead>
<tbody>
<tr>
<td>19,8088</td>
<td>4</td>
</tr>
<tr>
<td>36,1600</td>
<td>10</td>
</tr>
<tr>
<td>17,6600</td>
<td>4</td>
</tr>
<tr>
<td>36,2284</td>
<td>10</td>
</tr>
<tr>
<td>Nº TOTAL</td>
<td>28</td>
</tr>
</tbody>
</table>

A contabilização final das ancoragens foi feito tendo em consideração o respetivo comprimento total, isto é, determinaram-se os comprimentos livre e de selagem para cada nível de ancoragens assumindo que serão iguais nos restantes níveis.

No caso em estudo, considerou-se que o comprimento de selagem teria o valor fixo de 6 m e o livre iria variar entre 6 a 11 m. Assim, na totalidade serão gastos 1988 m de ancoragens (Quadro 4.4):
Quadro 4.4 – Valores determinados para o cálculo das ancoragens.

<table>
<thead>
<tr>
<th>Nível</th>
<th>LL*</th>
<th>LS**</th>
<th>L Total</th>
<th>Nº x m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
<td>6</td>
<td>17</td>
<td>476</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>6</td>
<td>15</td>
<td>420</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>6</td>
<td>14</td>
<td>392</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>6</td>
<td>13</td>
<td>364</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>6</td>
<td>12</td>
<td>336</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>1988</td>
</tr>
</tbody>
</table>

* comprimento livre ** comprimento de selagem

De modo a ilustrar a solução base como solução de projeto, a Figura 4.3 mostra o caso em estudo na fase de betonagem da laje da cave -4 onde é possível identificar além da parede moldada já construída os dispositivos de apoio provisório (ancoragens e os escoramentos de canto associados) bem como o apoio definitivo da parede materializado pelas lajes subterrâneas.

Figura 4.3 - Imagem do projecto de execução, na fase de construção, do Edifício Vandunen.
4.3. **ESTUDO DE SOLUÇÕES VARIANTES**

De forma a otimizar os custos de uma obra de contenção escorada foi desenvolvido um estudo com várias alternativas aos sistemas convencionais de escoramento. Nestes estudos teve-se como ponto de partida a retro análise do projeto efetuada, as suas condicionantes, nomeadamente o espaço de trabalho e esforços atuantes. Posteriormente, foi feita uma análise quantitativa e qualitativa desses sistemas comparando-se com a solução ancorada de referência.

4.3.1. **Escoramento Linear**

Para a contenção do edifício em estudo assumiu-se os espaçamentos e as localizações das ancoragens e verificou-se a sua adaptação para um sistema de apoio escorado. Com base nos esforços obtidos e estudados foi possível verificar quais os perfis mais eficazes, e contabilizar a quantidade de aço necessária para este tipo de escoramento.

O escoramento linear do projeto em estudo selecionado é constituído por perfis metálicos tubularesocos associados a perfis do tipo UPN 120 em elementos de contraventamento. De modo a tornar este tipo de solução o mais real e executável possível foi tido em conta a uniformização dos perfis tubulares sempre que praticável. Desta forma, e, de um modo geral, consideraram-se os perfis tubulares referidos no Quadro 4.5:

| Características dos Perfis Metálicos (mm) |
|------------------|----------------|
| Ø | t |
| 244.5 | 6.3 |
| 244.5 | 8 |
| 323.9 | 7.1 |

Para o cálculo foram diferenciadas as forças a que a parede está sujeita, ou seja, os esforços que a parede irá transmitir ao sistema de apoio, pois numa zona central este encontrar-se-á horizontal, e nos cantos será diagonal como ilustra a Figura 4.4. A figura apenas ilustra esquematicamente a definição em planta do sistema de apoio, sendo que o próprio está detalhado nas peças desenhadas anexas (Peça Desenho PD – 2).
Por se tratar de um estudo prévio concebeu-se uma ligação genérica entre os elementos tubulares, conforme ilustrado na Figura 4.5, quer para o nível superior do escoramento quer para os tramos intermédios. Este tipo de ligação é feito através de chapas metálicas, perfis UPN e goussets. Neste caso, dimensionou-se uma ligação aparáfusada com zonas soldadas.

A obra em causa tem uma largura de cerca de 20 m e, de forma a otimizar a quantidade de perfis metálicos, nos cálculos considerou-se um apoio tubular das escoras fundado em microestacas e
localizado a meio vão para contraventamento vertical das mesmas bem como um perfil do tipo UNP120 para o seu contraventamento horizontal. Relativamente ao escoramento de canto, não foi necessário utilizar apoios, mas foram contabilizados UPN 120 como contraventamento horizontal e vertical dos perfis tubulares.

Foi possível perceber que para este tipo de solução a quantidade de aço é bastante elevada, embora corresponda a uma solução em que as deformações da estrutura, potencialmente, são menores quando comparadas com a solução de ancoragens.

Assim, a totalidade de aço necessária para este tipo de sistema de contenção está apresentada no Quadro 4.6:

<table>
<thead>
<tr>
<th>Escoramento Linear</th>
<th>Ton.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfis Tubulares</td>
<td>65</td>
</tr>
<tr>
<td>Perfil UPN 120</td>
<td>6</td>
</tr>
<tr>
<td>TOTAL</td>
<td>71</td>
</tr>
</tbody>
</table>

4.3.2. Colunas Metálicas

De igual forma procedeu-se ao dimensionamento o estudo de um escoramento linear materializado por colunas metálicas compostas por cantoneiras de abas iguais contraventadas por cantoneiras com as mesmas características. Nesta solução foram utilizados dois tipos de cantoneiras para a constituição das colunas (Quadro 4.7). Foram ainda consideradas colunas metálicas de 0.70 m, ou seja, com afastamento entre as mesmas de 70 cm.

<table>
<thead>
<tr>
<th>Tipos de Cantoneiras</th>
<th>Afastamento [cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 x 70 x 7</td>
<td>70</td>
</tr>
<tr>
<td>80 x 80 x 8</td>
<td></td>
</tr>
</tbody>
</table>

Considerando que se trata de um sistema de apoio independente e que é estruturalmente bastante resistente não se tornou necessário o recurso a elementos de contraventamento.
A Figura 4.6 apresenta esquematicamente a planta do sistema de contenção, e a sua pormenorização encontra-se detalhada nas peças desenhadas anexas a este relatório (Peça Desenha PD – 3).

![Planta e Corte](image)

Figura 4.6 – Ilustração tipo da solução de colunas metálicas.

Nesta solução destaca-se o pormenor de ligação das colunas à parede periférica e que se encontra ilustrado, esquematicamente, na Figura 4.7.

A ligação é materializada através de cunhas metálicas e cabeços reguláveis, onde se pode apertar e desapertar consoante for necessário. Esta operação poderá ser auxiliada por recurso a cilindros hidráulicos. Para este tipo de solução pensou-se em que o melhor será a realização de módulos de colunas de vários comprimentos que se tornem adaptáveis.
Outra consideração importante é a utilização de tubos de prancha para apoio vertical das colunas centrais assinaladas na Figura 4.6. A opção por este tubo de apoio deve-se ao facto das colunas serem autoportantes e de este material poder ser reutilizado noutro tipo de aplicações em obra. Assim, a opção de tubos prancha e abraçadeiras parece ser uma boa opção.

Os parâmetros de ponto de partida para este estudo foram os mesmos, e concluiu-se que é uma solução, comparativamente ao sistema de escoramento tubular, melhor em termos da relação quantidade de aço/resistência. Isto é, para o mesmo comprimento o peso de aço necessário é menor pois as colunas formadas por cantoneiras têm menor área em relação aos tubos, logo, a relação área/peso é menor, e, consequentemente, o custo final também será previsivelmente menor. Apesar desta relação, e devido à opção de uniformização das colunas de canto independentemente do seu comprimento, é-se conduzido a um peso para as torres desta zona superior à da solução em elementos tubulares o que, apesar de no global ser ligeiramente mais leve, não é evidenciada de uma forma realista a melhor relação de pesos desta solução comparativamente com solução tubular conforme representado no Quadro 4.8.

Quadro 4.8 – Valores totais para uso de colunas metálicas.

<table>
<thead>
<tr>
<th>Colunas Metálicas</th>
<th>Ton.</th>
</tr>
</thead>
<tbody>
<tr>
<td>70x7</td>
<td>40</td>
</tr>
<tr>
<td>80x8</td>
<td>29</td>
</tr>
<tr>
<td>TOTAL</td>
<td>69</td>
</tr>
</tbody>
</table>
Adicionalmente comparando os dois sistemas esta solução torna-se melhor quando se pretende dar continuidade a trabalhos de escavação no interior da obra pelo facto de eliminar os contraventamentos. Em termos de custo pode-se dizer que se tratam de soluções equivalentes.

4.3.3. Treliça Periférica

Alternativamente foi ainda considerada uma viga horizontal treliçada como sistema de apoio para a contenção da parede. Adotou-se uma viga com cerca de 4 m de dimensão em relação à parede moldada. Esta viga é constituída por banzo “interior”, montantes e diagonais, considerando-se que o banzo “exterior” é materializado pela parede de contenção onde os perfis estarão apoiados. Os perfis utilizados sãounicamente perfis circulares ocos, que possuirão diâmetros conforme a sua localização em planta e nível de esforços instalados. Na Figura 4.8 é possível verificar a geometria em planta da treliça proposta através dos eixos dos tubos que a constituem bem com o corte com os respetivos apoios temporários necessários à sua montagem. A sua pormenorização encontra-se detalhada nas peças desenhadas anexas a este relatório (Peça Desenhada PD – 4).

Figura 4.8 – Ilustração tipo da solução da treliça.
Por se tratar de uma treliça constituída por perfis circulares idênticos ao da solução de escoramento linear, as suas ligações serão igualmente semelhantes (através de chapas metálicas apafusadas e soldadas).

Após os cálculos efetuados verificou-se a adequabilidade do sistema quer em termos de resistência quer comportamental. Quantificada a solução verificou-se que apresenta relativamente às duas anteriores como desvantagem o custo direto associado. Identificam-se ainda maiores dificuldades na montagem e eventualmente nas escavações na proximidade da parede periférica.

Faz-se notar que, à partida, este tipo de solução será potencialmente melhor nos rácios de custo e de facilitação da escavação quando se tratem de obras com áreas em planta bastante superiores à do estudo.

De forma a minimizar os custos associados, os cálculos efetuados apenas se basearam na quantidade de aço a ser utilizado, ou seja, para o estudo foram contabilizados diversos diâmetros de tubos perfazendo um total de cerca de 133 toneladas.

Em síntese, comparando os vários tipos de sistema de apoio foi possível verificar em termos de quantidade o apresentado no Quadro 4.9:

<table>
<thead>
<tr>
<th>TOTAL</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>ton</td>
</tr>
<tr>
<td>Ancoragens</td>
<td>1988</td>
</tr>
<tr>
<td>Escoramento Linear</td>
<td>-</td>
</tr>
<tr>
<td>Colunas Metálicas</td>
<td>-</td>
</tr>
<tr>
<td>Treliça</td>
<td>-</td>
</tr>
</tbody>
</table>

Adotando custos de referência para as ancoragens pré-esforçadas ao terreno e para o escoramento em aço, respetivamente de 65 €/m e 2,5 €/kg, é-nos possível verificar que as soluções de escoramento são, no mínimo e em termos diretos, cerca de 30% mais caras do que a soluções de ancoragens.

Além desta vantagem as ancoragens são um tipo de solução bastante utilizado para este tipo de obras, nomeadamente se se tratar de obras no meio de centros urbanos, principalmente pela ocupação do
espaço. Nestes casos não há grande espaço de manobra, e para além disso é uma forma eficaz no caso de se estar perante fundações adjacentes de prédios vizinhos.

No que diz respeito às soluções de escoramento verifica-se que, em termos diretos, são mais caras apesar de, em princípio, consistirem em soluções mais rígidas. No entanto se equacionar a reutilização parcial ou total dos elementos de escoramento estas soluções, além de potencialmente conduzirem a melhor desempenho em termos de deformações das cortinas, poderão tornar-se bastante mais económicas do que as soluções ancoradas.

Relativamente ao estudo da treliça, este foi o que conduziu a maiores custos, mas mesmo assim torna-se interessante considerar sistemas de apoio para obras de contenção com soluções deste tipo por se tratar de uma solução abrangente em vários sentidos. É de fácil utilização, funcionamento e adaptação às diversas obras de hoje em dia, quer em termos do terreno em si, e da própria escavação. Efetivamente quando comparada com os escoramentos lineares as soluções em viga treliçada são melhor adaptadas a escavações de grande área em planta enquanto as de escoramento linear destinam-se, pelas suas caraterísticas intrínsecas a escavações de menor área e estreitas.

Por estas razões e com vista a ilustrar o potencial e versatilidade das soluções treliçadas no ponto seguintes analisa-se o caso de escavações de maior área em planta.

4.3.4. Variações da Geometria de Escavação

De modo avaliar a evolução dos custos das soluções mais versáteis (colunas e treliças) foi desenvolvido um estudo para uma geometria da escavação maior em planta e com a forma quadrada.

Para esta escavação quadrada, teórica, admitiram-se os mesmos princípios que os do projeto em estudo (Edifício Vandunen), isto é, a parede de contenção será uma parede moldada com as mesmas dimensões do projeto real, terá os mesmos níveis de escavação, e o mesmo nível de esforços a atuar na parede. De forma a não fugir muito da dimensão do projeto real, considerou-se que esta escavação quadrada seria de 35 m de lado (o projeto do Edifício Vandunen tem, aproximadamente, dimensões de 36 x 20 m).

Tal como nas soluções anteriores, as colunas metálicas serão constituídas por cantoneiras de abas iguais contraventadas com cantoneiras da mesma dimensão, e a treliça será constituída apenas por tubos circulares com apoios verticais também através de tubos circulares.
Por se tratar de uma escavação quadrada a sua forma limita as colunas metálicas, então só serão dimensionadas colunas de canto. De modo a assegurar a encurvadura das colunas, nesta solução também se utilizaria como sistema de apoio das colunas de maiores dimensões tubos prancha.

Ambas as soluções estão esquematizadas na Figura 4.9 e detalhadas nas peças desenhadas PD – 5 e PD 6, respectivamente.

Para estas duas soluções, as quantidades de aço consumidas são apresentadas no Quadro 4.10.

Comparando estas soluções com os estudos variantes do projeto é possível verificar que o travamento da parede através das colunas metálicas aumenta cerca de 100%, enquanto a solução em treliça aumenta menos de 20%. Se pensarmos em termos de quantidade de aço por metro linear de parede e nível para a solução treliçada o rácio tem um decréscimo de aproximadamente 10%. Estes rácios comprovam a adequabilidade da solução para maiores áreas de parede a conter.
4.3.5. Evolução da Solução Vigada

Na sequência destes estudos, complementados por casos de obra constantes na bibliografia (por exemplo caso apresentado na Figuras 2.25) equacionou-se a utilização de um sistema de apoio modular alternativo, que tem por vista a simplificação da geometria e do espaço de trabalho no interior da obra. Assim, para o caso de um terreno com geometria linear (quadrado) a forma do travamento da parede passaria pelo recurso a uma estrutura metálica com geometria circular, e no caso do projeto do edifício em estudo, onde tem uma geometria mais retangular, seria aplicável um travamento elíptico como o esquematizado na Figura 4.10.

![Figura 4.10 – Esquema tipo do círculo e da elipse.](image)

Nos pontos seguintes é detalhada a solução alternativa proposta.
4.4. **Solução Modular Proposta**

Esta situação de sistema de apoio abrange vários aspectos, dos quais se destacam a forma de uma treliça pela desocupação do espaço interior da obra, e a utilização de elementos *standard* para que seja possível adaptar a outras obras deste tipo. A reutilização destes materiais será uma vantagem em termos de custos associados, pois, em qualquer obra será possível formar um sistema de apoio tendo várias dimensões de perfis *standards*.

A partir desde ponto, fez-se o estudo do círculo e da elipse, inicialmente, só com recurso a colunas metálicas e outro só com tubos circulares.

Com efeito, no caso do estudo da escavação do projeto em estudo as colunas metálicas não são possíveis de determinar na zona mais interior da escavação (utilização de colunas metálicas como banzo interior), ou seja, só é possível utilizar estes perfis composta como escoras, sofrendo apenas esforços axiais. Já o contrário é possível com os perfis em secção circular, onde é possível utilizar em todas a estrutura de contenção.

Então, de maneira a minimizar custos, a utilização da estrutura de contenção através de elipse com a mistura dos dois tipos de perfis foi ponderada e determinada. Assim, os perfis compostos funcionam como escoras, e os perfis circulares como banzo interior onde sofrem flexão composta. Verificada a flexão composta dos mesmos, determinou-se o perfil mínimo a utilizar através das expressões que relacionam o momento de inércia (I) e o módulo de flexão (W) dos perfis.

Para determinar os perfis finais utilizaram-se duas expressões das tabelas técnicas, assim

$$ I = \frac{\pi}{64} \times [d^4 - (d - 2e)^4] \quad (4.1) $$

$$ W = \frac{\pi}{32 \times d} \times [d^4 - (d - 2e)^4] \quad (4.2) $$

onde d é o diâmetro do tubo e e a espessura.
No Quadro 4.11 estão apresentados os resultados do cálculo do sistema de apoio à parede de contenção em forma de elipse.

<table>
<thead>
<tr>
<th></th>
<th>Observações</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elipse</td>
<td></td>
</tr>
<tr>
<td>Colunas</td>
<td>44 Colunas metálicas a funcionar apenas como escoras.</td>
</tr>
<tr>
<td>Tubos</td>
<td>116 Tubos de secção circular a funcionar como banzo interior.</td>
</tr>
<tr>
<td>Colunas + Tubos</td>
<td>160</td>
</tr>
</tbody>
</table>

Quanto à escavação quadrada considerada a situação anterior não acontece. Aqui, é possível considerar toda a estrutura de contenção com colunas metálicas ou só com tubos circulares.

A diferença entre os dois tipos de estrutura consiste na linearidade da solução quadrada, é uma solução perfeita, simétrica onde os esforços estão extremamente bem equilibrados. Da mesma forma, o estudo do sistema de apoio composto por colunas e de tubos foi efetuado para que fosse possível comparar com a solução de elipse anteriormente mencionada (Quadro 4.12 e Quando 4.13).

<table>
<thead>
<tr>
<th></th>
<th>Observações</th>
</tr>
</thead>
<tbody>
<tr>
<td>Círculo</td>
<td></td>
</tr>
<tr>
<td>Colunas</td>
<td>282 Toda a estrutura a trabalhar com colunas metálicas.</td>
</tr>
<tr>
<td>Tubos</td>
<td>152 Toda a estrutura constituída por tubos circular.</td>
</tr>
</tbody>
</table>
Comparando a solução do sistema de apoio como sendo uma solução mista (colunas + tubos) é possível afirmar que há um acréscimo da quantidade de aço relativamente à escavação do projeto em estudo para uma escavação quadrada (Quadro 4.13 e Quadro 4.10).

Apesar do acréscimo de custo direto constata-se da maior versatilidade desta solução por recorrer a elementos standard de seguida apresenta-se um estudo de sensibilidade da solução ao aumento das dimensões em planta da escavação.

Tal como nos casos anteriores estes estudos têm por base o projeto real com cerca de 20 m de largura bem como os seus restantes pressupostos. Assim, estudaram-se mais quatro projetos com o mesmo comprimento do projeto inicial, aumentando a largura do mesmo, ou seja, para 25 m, 30 m, 35 m e 40 m de largura e considerando os comprimentos de encurvadura de três formas, isto é,

\[L_{cr} = L \] (4.3)

\[L_{cr} = \frac{L}{2} \] (4.4)

\[L_{cr} = \frac{L}{3} \] (4.5)

Para um sistema de apoio materializado através de um sistema de escoramento linear com tubos metálicos, para as diferentes larguras só é viável a consideração dos dois menores comprimentos de encurvadura (Quadro 4.14):
Quadro 4.14 – Estudo sobre escoramento linear.

<table>
<thead>
<tr>
<th>Escoramento</th>
<th>Lcr=L</th>
<th>Lcr=L/2</th>
<th>Lcr=L/3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>127</td>
<td>110</td>
</tr>
<tr>
<td>L=25</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L=30</td>
<td></td>
<td>174</td>
<td></td>
</tr>
<tr>
<td>L=35</td>
<td></td>
<td></td>
<td>167</td>
</tr>
<tr>
<td>L=40</td>
<td></td>
<td>270</td>
<td></td>
</tr>
</tbody>
</table>

O Gráfico 4.5 representa os resultados obtidos e apresentados do Quadro 4.14 onde é possível verificar que para este tipo de sistema de apoio para uma obra com largura até 30 m há variações de quantidades de aço a utilizar reduzidas e que para larguras superiores a sua utilização torna-se impensável pelos seus valores aumentarem consideravelmente.

Comparando o projeto do edifício em estudo com cerca de 20 m de largura e o projeto estudado com 40 m, nota-se um aumento de cerca de 5 vezes superior. Assim, confirma-se a afirmação anterior de que a utilização deste tipo de sistema de apoio para paredes de contenção é válido para projetos com dimensões em termos de largura limitada ou reduzida.

Proferindo agora o estudo das colunas metálicas, este foi efetuado para as várias componentes do comprimento de encurvadura. De forma a tornar o estudo coerente, o afastamento das colunas foi considerado tendo como base o do projeto de referência.
Assim, para a largura de 25 m os elementos das colunas estarão afastadas cerca de 88 cm; para 30 m estarão 106 cm; para 35 m estarão 124 cm e, por fim, para 40 m estarão a 141 cm. O Quadro 4.15 mostra em termos numéricos as quantidades e o afastamento entre as cantoneiras de cada coluna da análise feita.

Quadro 4.15 – Estudo de colunas metálicas.

<table>
<thead>
<tr>
<th>Colunas Metálicas</th>
<th>Colunas</th>
<th>$L_{cr}=L$</th>
<th>$L_{cr}=L/2$</th>
<th>$L_{cr}=L/3$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L=25</td>
<td>123</td>
<td>155</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td>L=30</td>
<td>176</td>
<td>224</td>
<td>273</td>
</tr>
<tr>
<td></td>
<td>L=35</td>
<td>210</td>
<td>300</td>
<td>383</td>
</tr>
<tr>
<td></td>
<td>L=40</td>
<td>297</td>
<td>421</td>
<td>502</td>
</tr>
<tr>
<td></td>
<td>0.88 x 0.88</td>
<td>1.06 x 1.06</td>
<td>1.24 x 1.24</td>
<td>1.41 x 1.41</td>
</tr>
</tbody>
</table>

É importante referir que para o estudo das colunas apenas foram contabilizadas as próprias colunas, sem ter em conta os perfis verticais de contraventamento.

O Gráfico 4.6 representa os resultados obtidos e apresentados no Quadro 4.15. Da sua análise é possível verificar a linearidade entre as quantidades constatando-se ainda que para obras de larguras significativas a sua utilização torna-se inadequada podendo-se afirmar que o ideal desta solução é a sua utilização sem apoios verticais sendo por conseguinte adequada até larguras da ordem dos 25 - 30 m.
Por último, e relativamente à solução treliçada, nos estudos desenvolvidos, tal como na solução base, contabilizou-se o comprimento dos banzos interiores, montantes e diagonais uma vez que a parede materializa o bazo superior da viga horizontal. Esta viga tem alturas de 4 m e de 2.85 m no projeto base (largura de 20 m). Para 25 m de largura considerou-se 5.05 m e 3.6 m; para 30 m as alturas são de 6.06 m e 4.3 m; para 35 m de largura os valores considerados são de 7.07 m e 5 m, e, por fim, para 40 m de largura as alturas máximas consideradas são de 8.08 m e 5.7 m.

O Quadro 4.16 mostra os resultados obtidos relativos à análise feita para a treliça.

Quadro 4.16 – Estudo da treliça.

<table>
<thead>
<tr>
<th></th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ton</td>
</tr>
<tr>
<td>L=25</td>
<td></td>
</tr>
<tr>
<td>L=30</td>
<td></td>
</tr>
<tr>
<td>L=35</td>
<td></td>
</tr>
<tr>
<td>L=40</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trelíça</th>
<th>Lcr=L</th>
<th>Lcr=L/2</th>
<th>Lcr=L/3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>141</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>169</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>206</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>236</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Gráfico 4.6 – Estudo de colunas metálicas.
Capítulo 4

Graficamente, os resultados são o que se apresentam no Gráfico 4.7, onde é possível verificar um aumento praticamente linear da quantidade de aço a utilizar com este tipo de solução, o que comprova a afirmação anterior de que a utilização de uma treliça para obras de maior dimensão constitui uma boa opção.

![Gráfico 4.7 – Estudo da treliça.](image)

De uma forma expedita, com estas análises efetuadas também é possível comparar a utilização de colunas metálicas e das treliças para comprimentos de encorvadura com coeficiente igual a 1 (Lcr=L).

Assim, o Gráfico 4.8 mostra a variação entre as duas soluções, isto é, as treliças têm um crescimento progressivo conforme se aumenta a largura de escavação, enquanto as colunas têm o mesmo crescimento até à largura de escavação de 35 m e depois verifica-se uma tendência de incremento significativa confirmando-se assim que a utilização de treliças será, tendencialmente mais vantajosa.
Com base nestas conclusões principais de que com o aumento da área das escavações são preferidas soluções do tipo treliçadas e comparando com as quantidades de aço estimadas para estas e para a solução de anel circular interior (Quadros 4.11 a 4.13) verifica-se que para escavações com lados superiores a cerca de 30 m esta última conceção torna-se a mais competitiva das analisadas.

Considerando que se pretende desenvolver uma solução versátil que possa ser reutilizada em vários tipos de obras no sentido de amortizar os custos iniciais de execução a solução de anel interior corresponde àquela que melhor corresponde a esses pressupostos. Efetivamente este tipo de solução facilmente se adapta a escavações quadradas ou retangulares e sendo mesmo possível a sua adaptação a outras geometrias por agrupamento de mais de um anel interior (Figura 4.11).

Os sistemas serão compostos por tubos circulares e por colunas metálicas constituídas por cantoneiras de abas iguais, e para cada caso foi tido em consideração a uniformização de todos os tipos de perfis a serem utilizados.
Outra particularidade deste tipo de solução é a utilização de módulos pré-definidos de maneira a que a solução seja ajustável às necessidades dos vários tipos de obra. Assim, foram considerados cinco módulos com dimensões de 0.5 m, 1.0 m, 1.5 m, 2.0 m e 3.0 m.

Em seguida, na Figura 4.12 são representados os vários módulos de colunas metálicas considerados para as escoras periféricas concebidas no âmbito do estudo.
Relativamente aos tubos circulares constituintes do anel interior a ligação entre eles será feita através de uma ligação com recurso a parafusos e chapas metálicas.

No âmbito do estudo conceberam-se 3 tipos de ligações a considerar, ou seja,

- Ligação da coluna metálica à parede moldada;
- Ligação da coluna metálica ao perfil tubular;
- Ligação entre perfis (colunas metálicas/colunas metálicas e tubo circular/tubo circular).

A primeira ligação mencionada será executada através de um cabeço com um parafuso regulável de modo a ajustar o comprimento das colunas ao espaço inserido (Figura 4.13). Tal como já mencionado para os casos dos escoramentos lineares com colunas estas operações serão complementadas com auxílio de cilindros hidráulicos.
Quando à ligação das colunas metálicas ao perfil tubular esta será feita através de chapas e parafusos.

Por último, relativamente à última ligação referida está também efetuada através de chapas e parafusos complementada por cunhas desviatórias para promoção de ajustes geométricas possibilitados pelo facto de entre as chapas existir um ângulo de abertura que permite a geometria de escoramento pretendida.

De modo a validar este tipo de ligação, embora de uma forma muito expedita se atendermos às especificidades da mesma, foi feita a verificação de ligação entre tubos circulares no programa de cálculo Autodesk Analisys Robot 2016.

Ainda assim, este tipo de ligação analisada no referido software não é a realista do sistema consistindo numa ligação geral uma vez que, por exemplo, no caso da ligação entre chapas o software considera duas chapas unidas, nunca considerando um ângulo de abertura mínimo. Deste modo, apenas foi feita a verificação para o caso do sistema de apoio do projeto de escavação quadrada, por corresponder à situação mais simples e por se tratar do sistema mais global. Por outro lado o estudo foi desenvolvido para as barras com maiores esforços axiais independentemente do seu comprimento.

Assim, pelas Figuras 4.14 e 4.15 é possível visualizar a modelação de parte da estrutura (trata-se de uma estrutura simétrica), onde se consegue distinguir as colunas metálicas formadas por cantoneiras e os tubos circulares.
Feita a modelação da estrutura, a quantificação de ações a considerar e de uma análise global, o Robot permite entrar no menu de ligações onde se optou por dimensionar a ligação para as barras. No caso, essas barras, assinaladas na figura, encontram-se na zona mais tangente à parede com valores de esforço axial máximo de 7683 kN e de 7718 kN.

Considerando que todos os elementos entre a estrutura e a ligação são do mesmo material (S235) e soldaduras de 16 mm, de forma a verificar a conformidade com as normas EC 3 e SN044a, obtiveram-se como resultado para esta ligação o seguinte:

- Chapas de ligação entre tubos com diâmetro de 790 mm e 35 mm de espessura;
- Parafusos com diâmetro de 24 mm e classe de 10.9;
Capítulo 4

- Número total de parafusos: 48

Nas Figuras 4.16 e 4.17 ilustra-se o esquema da ligação dimensionada por recurso ao referido software e a visualização 3D da mesma, respetivamente.

Feita a verificação para os perfis considerados como mais desfavoráveis, admite-se que este tipo de solução seja eficaz para as restantes barras da estrutura utilizando o mesmo tipo de chapa variando-se unicamente a quantidade de parafusos a utilizar. A verificação efetuada será uma referência para a restantes soluções.

Considerando as duas tipologias de obras estudadas foi necessário assumir, nos extremos das ligações, um mecanismo de ajuste, ou seja, fazendo um escoramento circular ou elíptico, na união dos tubos circulares é preciso que este se feche unindo-se à parede moldada.
Atendendo a que geometria das escavações pode ser bastante variável admite-se que esses elementos sejam executados com geometrias diversas por recurso a chapas metálicas aparafusadas e/ou soldadas. Tratando-se de uma obra mais linear ou quadrada, a hipótese de se utilizar um dispositivo cúbico será o mais adequado para a transmissão de esforços. No entanto, para outro tipo de obras e geometria desse dispositivo deverá ser mais abrangente e por isso, uma geometria trapezoidal ou triangular será a mais versátil.

Estes três tipos de mecanismos de ligação possíveis devem ser sempre adaptáveis a cada obra de contenção em particular. Considera-se que possam ter geometria de dimensão variável e a utilização de cunhas/calços para melhor ligação entre os perfis e o mecanismo em si. Da mesma forma, pode-se considerar que sejam mecanismos de geometria oca onde se podem aparafusar ou soldar os perfis. A forma como estes mecanismos se ligam à parede será materializada através da colocação de uma chapa metálica aparafusada entre a parede e o próprio dispositivo. Para além de ligação entre elementos metálicos este tipo de mecanismos servirá ainda como suporte aos perfis de escoramento que funcionam à tração.

Quanto à ligação entre as colunas metálicas das escoras e a parede moldada admite-se a utilização de uma chapa metálica, eventualmente perdida, de forma quadrangular de dimensão superior à coluna, ou seja, as cantoneiras que constituem cada uma das colunas estão afastadas entre si de 70 cm, o que leva a que a chapa de ligação à parede seja de pelo menos 80 cm. Considera-se que deverá ser uma ligação aparafusada, embora possa ter alguns mecanismos de ajuste.

Por fim, a ligação entre as colunas metálicas e os perfis circulares, deverá ser feita com duas chapas quadradas de 800 mm, que devem estar em cada um dos lados do tubo de modo a uma delas ligar a coluna ao tubo, e a outra chapa a servir como um reforço da secção circular com vista à limitação de eventuais deformações do tubo.
5. CONCLUSÕES

5.1. CONCLUSÕES

A realização deste trabalho permitiu identificar a variedade de aplicações que são permitidas com a utilização de perfis metálicos, principalmente, perfis tubulares e cantoneiras, para obras de contenção servindo-se deste tipo de perfis como soluções de apoio às estruturas.

O estudo centrou-se na utilização de perfis metálicos circulares como banzo interior de um sistema de escoramento definido e as cantoneiras como a formação de colunas metálicas a trabalharem como escoras. Posteriormente, no sentido de ligar os diversos elementos assumiu-se, de forma a ser possível reutilizar os diversos materiais em obras futuras, a utilização de chapas metálicas aparafusas, do mesmo modo que a utilização e módulos *standard* com comprimentos definidos. Assim, é possível a utilização dos diversos materiais, rentabilizando os custos finais de cada obra.

A utilização de módulos com várias dimensões pré-definidas facilita na geometria a definir para cada tipo de obra de escavação, sendo possível fazer a sua modelação conforme a necessidade de cada projeto maximizando-se ainda a reutilização do sistema o que se reveste numa vantagem competitiva muito relevante.

Considera-se que a solução proposta é viável em vários aspectos, não só pela dinâmica do uso de módulos já pré-definidos como pela facilidade de adaptação a vários geometrias de obras. Pode dizer-se que, teoricamente, se trata de um sistema estruturalmente simples com ligações também simples e versáteis. Para além destas vantagens, a reutilização das peças é um ponto fulcral deste sistema, onde a curto prazo tem um valor económico elevado mas a longo prazo torna-se uma solução rentável a vários níveis. É através da reutilização das peças que é possível assumir que existe uma melhor gestão de recursos que torna esta solução sustentável a médio/longo prazo.
Outra vantagem deste tipo de solução é a não utilização de mão-de-obra especializada e de equipamentos especiais para a sua construção em que se recorre a uma grande componente de pré-fabricação executada em oficina o que garante ainda um maior controlo da qualidade do sistema. Em termos de construção torna-se uma solução benéfica por não ocupar espaço no interior do terreno escavado.
Concluído o presente trabalho considera-se que, apesar de genericamente se terem atingido os objetivos iniciais propostos identificam-se alguns pontos onde o mesmo não foi suficientemente desenvolvido e, por conseguinte merece o seu aprofundamento. Dentro destes pressupostos base destacam-se:

- A análise mais detalhada dos esforços instalados nas cortinas de contenção, por exemplo recorrendo a modelos de elementos finitos que envolvam a estrutura e o maciço envolvendo com apoio de software geotécnico específico (Plaxis ou equivalente) e simulem a sequência construtiva;

- A generalização do cálculo e do layout da escavação a outras geometrias de escavações (por exemplo usando os mesmos elementos mas promovendo a alteração do layout em planta e/ou corte);

- A revisão dos cálculos das ligações e da modelação das mesmas que minimizem as limitações da versão do software utilizado;

- A pormenorização detalhada de todos os elementos concebidos por forma a eliminar eventuais indeterminações e incongruências do sistema;

- Previsão de incorporação de dispositivos de monitorização nos elementos do sistema (por exemplo instalação de extensómetros em módulos especiais isolados de colunas e de tudos);

- A implementação do sistema numa obra piloto.
REFERÊNCIAS BIBLIOGRÁFICAS

Referências Bibliográficas

[21] Norma NCCI SN044a

Referências Bibliográficas

[35] www.ccmjsystems.com/2.html

[38] http://portfolio.soaresdacosta.com/pt/
ANEXOS
ANEXO 1

Peça Desenhada 1

Solução Base do Projeto Base

Travamento através de Ancoragens
SARA CRISTINA BARROS BRANCO RODRIGUES
INSTITUTO SUPERIOR DE ENGENHARIA DO PORTO

SISTEMAS MODULARES DE ESCORAMENTO - ESTRUTURAS DE CONTENÇÃO ENTERRADAS
PROJETO DE RELATÓRIO DE ESTÁGIO PARA OBTENÇÃO DE GRAU DE MESTRE

Nome da obra/Local
Titulo do desenho
Sector

Lake Towers - Edifício D - Piso 3
4400-617 São Pedro da Afurada, Vila Nova de Gaia

Project./Des.
Data
Escala
2015/10/10
1/100

Especialidade

DIRECÇÃO DE ESTUDOS E PROJECTOS
Rua Daciano Baptista Marques, 245
Tel.228342200, Fax228342655, E-mail: projectos.sc@soaresdacosta.pt

SOLUÇÃO BASE DO PROJETO BASE
TRAVAMENTO ATRAVÉS DE ANCORAGENS - PLANTA E CORTES
ANEXO 2

Peça Desenhada 2

Estudo de Soluções Variantes

Travamento através de Escoramento Linear
SISTEMAS MODULARES DE ESCORAMENTO - ESTRUTURAS DE CONTAÇÃO ENTERRADAS
PROJETO DE RELATÓRIO DE ESTÁGIO PARA OBTENÇÃO DE GRAU DE MESTRE

ESTUDO DE SOLUÇÕES VARIANTES
TRAVAMENTO ATRAVÉS DE ESCORAMENTO LINEAR - PLANTA E CORTE

PLANTA
Escala: 1/100

CORTE B - B
Escala: 1/100

Nome da obra/Local: Lake Towers - Edifício D - Piso 3
Rua Daciano Baptista Marques, 245
Tel. 228342200, Fax 228342655, E-mail: projectos.sc@soaresdacosta.pt
ANEXO 3

Peça Desenhada 3

Estudo de Soluções Variantes

Travamento através de Colunas Metálicas
ANEXO 4

Peça Desenhada 4

Estudo de Soluções Variantes

Travamento através de Trelilha
SISTEMAS MODULARES DE ESCORAMENTO - ESTRUTURAS DE CONTENÇÃO ENTERRADAS
PROJETO DE RELATÓRIO DE ESTÁGIO PARA OBTENÇÃO DE GRAU DE MESTRE
ESTUDO DE SOLUÇÕES VARIANTES
TRAVAMENTO A TRAVÉS DE TRELHÂ - PLANOS E CORTE
ANEXO 5

Peça Desenhada 5

Viabilidade para outra Geometria

Travamento através de Colunas Metálicas
Planta
Esc.: 1/100
ANEXO 6

Peça Desenhada 6

Viabilidade para outra Geometria

Travamento através de Trelilha
ANEXO 7

Peça Desenhada 7

Solução Modular Proposta para Geometria Quadrada

Travamento através de Colunas Metálicas e Tubos Circulares
Anexos

ANEXO 8

Peça Desenhada 8

Solução Modular Proposta para Projeto Base

Travamento através de Colunas Metálicas e Tubos Circulares
Anexo 9

Peça Desenhada 9

Módulos de Colunas Metálicas

Constituídas por Cantoneiras de Abas Iguais
SARA CRISTINA BARROS BRANCO RODRIGUES
INSTITUTO SUPERIOR DE ENGENHARIA DO PORTO

Nome da obra/Local
SISTEMAS MODULARES DE ESCORAMENTO - ESTRUTURAS DE CONTENÇÃO ENTERRADAS
PROJETO DE RELATÓRIO DE ESTÁGIO PARA OBTENÇÃO DE GRAU DE MESTRE

Título do desenho
SISTEMA MODULAR FINAL
COLUMNAS METÁLICAS CONSTITUÍDAS POR CANTONEIRAS DE ABAS IGUAIS

PD 9
Data 2015/10/10