Step based physical activity guidelines for preschool-aged children

Susana Vale, Stewart G. Trost, Michael J. Duncan, Jorge Mota

Abstract

Objective
Public health organizations recommend that preschool-aged children accumulate at least 3 h of physical activity (PA) daily. Objective monitoring using pedometers offers an opportunity to measure preschooler's PA and assess compliance with this recommendation. The purpose of this study was to derive step-based recommendations consistent with the 3 h PA recommendation for preschool-aged children.

Method
The study sample comprised 916 preschool-aged children, aged 3 to 6 years (mean age = 5.0 ± 0.8 years). Children were recruited from kindergartens located in Portugal, between 2009 and 2013. Children wore an ActiGraph GT1M accelerometer that measured PA intensity and steps per day simultaneously over a 7-day monitoring period. Receiver operating characteristic (ROC) curve analysis was used to identify the daily step count threshold associated with meeting the daily 3 hour PA recommendation.

Results
A significant correlation was observed between minutes of total PA and steps per day (r = 0.76, p < 0.001). The optimal step count for ≥ 3 h of total PA was 9099 steps per day (sensitivity (90%) and specificity (66%)) with area under the ROC curve = 0.86 (95% CI: 0.84 to 0.88).

Conclusion
Preschool-aged children who accumulate less than 9000 steps per day may be considered Insufficiently Active.
Keywords

Physical activity guidelines;
Steps;
Preschool children

Introduction

Physical activity (PA) is recognized as a fundamental component of a healthy lifestyle in young children (Pate et al., 2006b). Recent PA guidelines from the United Kingdom, Australia and Canada recommend that preschool-aged children accumulate at least 3 h of PA across an entire day (Ageing, D.o.H.a, 2010, Department of Health, P.A., 2011, Okely et al., 2008 and Tremblay et al., 2012). These recommendations state that children can accumulate PA intermittently throughout the day, and can include light-intensity activities such as standing, moving around and active play as well as moderate-to-vigorous intensity activities such as brisk walking, running and climbing (Ageing, 2010).

Accelerometer-based motion sensors have become a commonly used and accepted measure of PA in children and youth and are the preferred assessment methods in studies involving young children (Trost and O'Neil, 2014). However, because accelerometry is relatively expensive and requires software for initialization, download, and data analysis, it is more labor intensive and less economical for use in general clinical practice or educational settings like schools and early childhood education centers. In contrast to accelerometers, pedometers are simple and low cost PA assessment tools that record steps taken over time, usually expressed as steps per day (Freedson and Miller, 2000). Furthermore, since pedometers enable a wide range of end users to monitor PA levels using a common metric related to ambulatory activity, they provide a unique opportunity for bridging the gap between research and practice, and ultimately to real-world applications for health promotion (Tudor-Locke et al., 2013). As such, daily step counts are an important behavioral target for PA interventions (Simpson et al., 2003).

Although pedometers provide useful information about the PA levels of young children, the number of steps per day that corresponds to PA guidelines for preschool-aged children is not well understood. To our knowledge only one published study has operationalized the current 3-hour...
guideline on the basis of daily step counts (Gabel et al., 2013). Gabel et al. (2013) employed accelerometry to simultaneously measure daily step counts and total PA (sum of light-, moderate- and vigorous-intensity PA) in a sample of Canadian preschool-aged children (N = 133). Using regression-based prediction models and ROC curve analyses, a step target of 6000 steps per day was identified as equivalent to 3 h of daily total PA. They produced separate models (with associated cut-points), one for 3 hour PA at any intensity and another for 3 h at any intensity and including 1 h at MVPA, in their analysis. Both models produced slightly different values but both approximated to just over 6000 steps per day. As a consequence Gabel et al. (2013) proposed a single cut-off point of 6000 steps per day as representative of 3 hour daily PA. Although this study provided a clear and empirically-based daily step target for preschool-aged children, the accelerometer-based estimates of minutes spent in total PA or daily minutes spent in PA that were at least of light-intensity were based on an accelerometer count threshold or “cut-point” of just 8 counts per 3 second epoch (160 counts per min (cpm)). The use of the 160 cpm cut-point to distinguish light-intensity PA from sedentary activity is questionable. This threshold may misclassify sedentary activities such as seated play and doing arts and crafts as light-intensity PA, resulting in an overestimation of total PA minutes, and an underestimation of the steps per day required to achieve the daily 3 hour PA recommendation. Presently, there is no consensus on the optimal cut-point for delineating sedentary from light-intensity PA in preschool-aged children. However, recent work suggests that a ≥ 200 counts per 15 s epoch should be used to differentiate between sedentary and light PA because that cut-point corresponded to the lowest count rate recorded during slow walking among preschool-aged children (Byun et al., 2013 and Espana-Romero et al., 2013).

Given the need to further explore the impact of different accelerometer count cut-points on daily step count equivalencies for preschool-aged children, and the need to apply count cut-points that more accurately differentiate light intensity PA from sedentary behavior, the purpose of this study was to derive step-based recommendations consistent with current PA recommendations for preschool-aged children.

Methods and procedures

Participants and data collection

Participants in this study were preschool-aged children enrolled in the Preschool Physical Activity, Body Composition and Lifestyle Study
A random sample of children, aged 2–6 years, was recruited from kindergartens located in the metropolitan area of Porto, Portugal. For this analysis, we included only children aged three to six years with seven days of accelerometer data. The final sample included 916 preschool-aged children (50% girls). Data were collected between April 2009 and November 2013. Informed written consent was obtained from parents and school supervisors. Study procedures were approved by the Portuguese Foundation for Science and Technology and by the Scientific Board of the Physical Activity and Health doctoral program.

Anthropometric assessment
Body mass and height were measured using standard anthropometric methods. Body mass was measured to the nearest 0.1 kg, with participants lightly dressed (underwear and tee-shirt) using a portable digital beam scale (Tanita Inner Scan BC 532). Height was measured to the nearest millimeter in bare or stocking feet with children standing upright against a Holtain portable stadiometer (Tanita). The measurements were repeated twice and the average was recorded. BMI was calculated as body mass (kg) divided by height (m) squared.

Physical activity assessment
Daily total PA was measured using an ActiGraph GT1M accelerometer (Pensacola, FL, USA). This device produces output in the form of activity counts, which provides information about the intensity of PA, the higher the counts the greater the intensity (Janz, 1994). Participants wore the accelerometer on seven consecutive days (Monday to Sunday) and a minimum wear time of 10 h per day was considered valid data for the analysis (Rich et al., 2013). Non-wear time was defined as a period of at least 60 consecutive minutes of zero counts (Byun et al., 2011, Choi et al., 2011 and Pfeiffer et al., 2009). In this study, the epoch duration was set to 5 s, which has been shown to be more accurate for the assessment of the spontaneous and intermittent activities of the young children (Vale et al., 2009). The accelerometer output can also be interpreted using intensity-based thresholds or count cut-points, which categorize activity counts as sedentary, light, moderate, or vigorous intensity PA. Total PA or daily minutes spent in activity of at least light-intensity was calculated using a cut-point of ≥ 200 counts per 15 s, which corresponds to the lowest count rate recorded for slow walking in a previously conducted accelerometer calibration study involving preschool-aged children (Espana-Romero et al.,)
To process the data we used Actilife® software which automatically scaled the 15 s cut-point value to the 5-s epoch. Parents were instructed to attach the accelerometer when the child awoke and to remove it when they went to bed. The accelerometer was firmly adjusted at the child’s hip by an elastic waist belt under their clothing. Activities were not prescribed or directed by the teachers or researchers. All children participated in normal activities with their classmates. For total PA, we followed the guidelines of UK recommendations, Australian National Physical Activity Recommendations for Children 0–5 years of age and Canadian recommendations (Ageing, D.o.H.a, 2010, Department of Health, P.A., 2011 and Tremblay et al., 2012) calculating the proportion of children with 3 h or more of total PA. Children were classified as meeting (Sufficiently Active) or not meeting (Insufficiently Active) guidelines if they accumulated at least 3 h of total PA, as measured by the accelerometer, on at least 5 of the 7 monitoring days (Addy et al., 2014).

Statistical analyses

Descriptive data are presented as means and standard deviation. All variables were checked for normality using Kolmogorov–Smirnov tests. Comparisons between genders for all variables were conducted with independent t-tests. Pearson's correlation and linear regression were used to model steps per day as a function of accelerometer-measured minutes of total PA per day. To identify the steps per day value that maximized the sensitivity (true-positives) and specificity (true-negatives) for classifying children as “Sufficiently Active” or “Insufficiently Active”, a receiver operating characteristic (ROC) curve was created and analyzed. The area under the ROC curve (ROC-AUC) provides a measure of classification accuracy that jointly considers sensitivity and specificity. The curve plots the false-positive rate (1 — specificity) on the x axis and the true positive rate (sensitivity) on the y axis. An area of 1 represents perfect classification, whereas an area of 0.50 represents a complete absence of classification accuracy. ROC-AUC values of 0.90 are considered excellent, 0.80–0.89 good, 0.70–0.79 fair, and < 0.70 poor (Metz, 1978). Data were analyzed using MedCalc v13.0.

Results

Children's descriptive characteristics, including average daily total PA and steps per day, are summarized in Table 1. On average, boys engaged in significantly more total daily PA and accumulated significantly greater steps per day than girls (p ≤ 0.001 and p ≤ 0.05, respectively). About 71% of the
children did not accomplish the recommended 3 or more hours of total PA daily.

Minutes per day of total PA was a significant predictor of steps per day (steps = (46 \times \text{minutes per day of total PA}) + 1850; R^2 = 0.581; p < 0.001) (Fig. 1). In addition, using ROC curve analysis, sensitivity and specificity were optimized at 9099 steps per day (sensitivity (90%) and specificity (66%)) (95% CI: 9041 to 9408) with an associated AUC of 0.86 (95% CI: 0.84 to 0.88) (see Fig. 2). This finding indicated that preschool-aged children should accumulate at least 9000 steps per day to meet the recommendation of at least 3 h of total PA per day.
Fig. 1.
Relationship between minutes engaged in physical activity and daily step counts.

Fig. 2.
Receiver operating characteristic curve for steps per day predicting whether the 3 h of total PA recommendation was met in this population.
Although, boys exhibited significantly greater steps per day than girls, the gender-specific ROC curve values are similar (boys: 9225 steps per day vs girls: 9177 steps per day) (Fig. 3).

![Steps - Boys](image1.png)

![Steps - Girls](image2.png)

Fig. 3.
Receiver operating characteristic curve for steps per day predicting whether the 3 h of total PA recommendation was met in this population.

Discussion

The beneficial impact of regular PA on children’s health and well-being is well-established. However, the number of steps per day associated with meeting the recommended dose of total PA in preschool-aged children is poorly understood. The present study extends understanding in this area by identifying daily step-based recommendations consistent with current PA recommendations in preschool-aged children. A key finding of our study is that preschool-aged children who accumulate less than 9000 steps per day may be considered Insufficiently Active.

On average, participants accumulated 162 ± 35 min per day of total PA and 9297 ± 2167 steps per day. This step count value is somewhat higher than that reported by Gabel et al. (2013) (8968 steps per day) and Pagels et al. (2011) (7313 steps per day), but lower than those reported by Tanaka and Tanaka (2009) (13,037 steps per day) and Cardon and De Bourdeaudhuij (2007) (9980 steps per day). The discrepancy between prior studies in this area may be related, at least in part, the different instruments and methodology used as well as cultural and environmental differences in the daily lifestyle of preschool-aged children from different countries. Furthermore, consistent with the majority of prior studies conducted in preschool-aged children (Hinkley et al., 2008, Pagels et al., 2011 and Tanaka
and Tanaka, 2009), boys in our sample exhibited higher levels of daily total PA and accrued more steps per day than girls. Similar to other studies (Gabel et al., 2013 and Pagels et al., 2011) our data showed a strong and positive correlation between steps per day and minutes of accelerometer-measured total PA, irrespective of gender. Based on accelerometer determined minutes of total PA, just under 30% of the preschool-aged children in our sample achieved the recommended level of at least 3 h per day of total PA, with boys (36.9%) more likely to meet the recommendation than girls (20.8%). Our data are consistent with other studies with regard to gender differences in PA (Beets et al., 2011, Vale et al., 2010 and Vale et al., 2013) but the proportion of children meeting the daily 3 h recommendation is lower than that reported in these studies. This discrepancy may be related to, in part, the count cut-point used to estimate total PA. In the studies by Vale et al. (2013) and Gabel et al. (2013) the accelerometer cut-point (≥ 38 counts per 15 s and ≥ 40 counts per 15 s, respectively) was lower than that used in the current study (≥ 200 counts per 15 s), which considered light-intensity to be equivalent to the intensity of slow walking (Espana-Romero et al., 2013). Thus, as a consequence of using a higher count threshold, the percentage of children who met the 3-hour total PA recommendation was lower (Gabel et al. (2013) — 73% and Vale et al. (2013) — 90%). The issue of different cut-points and their associated impact on prevalence estimates for PA in preschool-aged children is worthy of further discussion. Moreover, different criterion measures have been used in previous studies establishing PA related cut-points which may help explain the different cut-points that have been proposed. Reilly et al. (2003), Sirard et al. (2005) and Van Cauwenberghoe et al. (2011) calibrated the ActiGraph accelerometer with the use of direct observation, whereas Pate et al. (2006a) calibrated the ActiGraph accelerometer with the use of VO2 measured via indirect calorimetry. In this study, cut-points for moderate- and vigorous-intensity PA were published however cut-points for sedentary behavior and light-intensity PA were identified and have been published in recent studies (Byun et al., 2013, Espana-Romero et al., 2013, Pfeiffer et al., 2009 and Williams et al., 2008).

Previous research involving school-aged children and adolescents has developed various step-based recommendations for achieving PA guidelines (Adams et al., 2013, Tudor-Locke et al., 2004 and Vincent and Pangrazi, 2002). Nevertheless, there is inconsistency in the exact values that are being suggested. Based on accelerometer steps per day and accelerometer
determined daily minutes of moderate-to-vigorous intensity PA, one recent study identified 12,000 steps per day as a threshold to determine compliance with the 60 min of MVPA daily recommendation in children and youth age 6–19 years, for both gender groups (Colley et al., 2012). To the best of our knowledge, only one study in preschool-aged children has been carried out with this purpose and employing ROC curve analysis (Gabel et al., 2013).

However, in their study Gabel et al. (2013) used 160 cpm as the threshold for light-intensity physical activity. In our opinion, this threshold may be inappropriate as 160 cpm could misclassify, predominantly sedentary activities such as children being seated while playing, as light-intensity activity. To further explore this point, we replicated the work of Gabel et al. (2013) and identified a daily step threshold of 6736 steps per day, which is comparable to the 6000 steps per day threshold they proposed. That we were able to replicate Gabel’s findings in our sample indicates that the task of deriving daily step thresholds from accelerometer determined minutes of total PA is dependent on: 1) the operational definition of light-intensity PA or non-sedentary activity; and 2) the choice of accelerometer cut-point to match this definition. In the present study, we used the 800 cpm cut-point as suggested in previous studies (Espana-Romero et al., 2013 and Pate et al., 2006a). This threshold corresponds with slow walking activity and seems to be more consistent with PA recommendations. This may be particularly true for those who accumulate steps through light-intensity PA, such as slow walking. In our study we categorized slow walking as a light-intensity PA.

In our study we observed a gender-related difference in steps per day, minutes of engagement in total PA and achievement of the 3 h total PA recommendations. However, steps per day thresholds identified in the gender-specific ROC curve analyses were quite similar (boys: 9225 steps per day vs girls: 9177 steps per day) for the same cut-point value. Additional analysis was carried out accounting for age and no differences were found. Therefore, the suggested steps per day threshold in the present analysis is not gender specific and a single cut point for all preschool age children may be more practical for research, clinical use and in promoting community public health.

The strengths of this study include our focus on PA levels in preschool-aged children and an assessment of compliance with PA recommendations and steps per day using an objective PA measure. It should, however, be recognized that intensity of some activities may be underestimated by an accelerometer. Nevertheless, some limitations of the study should be
recognized. Although recognized criteria for judging the optimal classification accuracy were employed in this study, it should also be acknowledged that the resultant steps per day threshold had high sensitivity but lower specificity. Thus, while a small percentage (~5%) of sufficiently active children would not meet the 9000 steps per day criterion and be misclassified as Insufficiently Active, about 30% of Insufficiently Active children would meet the 9000 steps per day criterion and be misclassified as sufficiently active. Future research might therefore explore how steps per day thresholds might be influenced in situations where sensitivity and specificity are matched. The present study included preschool-aged children from only one metropolitan area, making it difficult to generalize the findings to other environments or locations. In addition, we were not able to collect data in relation to the context of PA in the preschool setting (e.g., to understand any PA intensity differences between activities initiated by the teacher or the child) due to the labor intensive nature of this form of data collection. However, multiple method approaches that integrate accelerometer and direct observation might be useful in future research.

Conclusion

The results of the present study suggest that preschool-aged children who accumulate less than 9000 steps per day may be considered Insufficiently Active. Public health professionals, clinicians and community groups engaged in PA programs for preschool-aged children may therefore benefit from promoting this daily step target.

References

Adams et al., 2013

M.A. Adams, W.D. Johnson, C. Tudor-Locke

Steps/day translation of the moderate-to-vigorous physical activity guideline for children and adolescents

Addy et al., 2014

C.L. Addy, J.L. Trilk, M. Dowda, W. Byun, R.R. Pate

Assessing preschool children's physical activity: how many days of accelerometer measurement
Move and play every day

National Physical Activity Recommendations for Children 0–5 Years, Commonwealth of Australia (2010)

Beets et al., 2011
M.W. Beets, D. Bornstein, M. Dowda, R.R. Pate
Compliance with national guidelines for physical activity in U.S. preschoolers: measurement and interpretation

Byun et al., 2011
W. Byun, M. Dowda, R.R. Pate
Correlates of objectively measured sedentary behavior in US preschool children
Pediatrics, 128 (2011), pp. 937–945

Byun et al., 2013
W. Byun, S.N. Blair, R.R. Pate
Objectively measured sedentary behavior in preschool children: comparison between Montessori and traditional preschools

Cardon and De Bourdeaudhuij, 2007
G. Cardon, I. De Bourdeaudhuij
Comparison of pedometer and accelerometer measures of physical activity in preschool children

Choi et al., 2011
L. Choi, Z. Liu, C.E. Matthews, M.S. Buchowski
Validation of accelerometer wear and nonwear time classification algorithm

Colley et al., 2012
R.C. Colley, I. Janssen, M.S. Tremblay

Daily step target to measure adherence to physical activity guidelines in children

Department of Health, P.A., 2011
Department of Health, P.A.

Health improvement and protection

Espana-Romero et al., 2013
V. Espana-Romero, J.A. Mitchell, M. Dowda, J.R. O'Neill, R.R. Pate

Objectively measured sedentary time, physical activity and markers of body fat in preschool children

Freedson and Miller, 2000
P.S. Freedson, K. Miller

Objective monitoring of physical activity using motion sensors and heart rate

Gabel et al., 2013

Step count targets corresponding to new physical activity guidelines for the early years

Hinkley et al., 2008
T. Hinkley, D. Crawford, J. Salmon, A.D. Okely, K. Hesketh

Preschool children and physical activity: a review of correlates

Janz, 1994
K.F. Janz

Validation of the CSA accelerometer for assessing children's physical activity

Metz, 1978
C.E. Metz

Basic principles of ROC analysis

Okely et al., 2008
A.D. Okely, J. Salmon, S.G. Trost, T. Hinkley

Discussion Paper for the Development of Physical Activity Recommendations for Children Under Five Years
Commonwealth Department of Health and Ageing, Australia (2008)

Pagels et al., 2011
P. Pagels, C. Boldemann, A. Raustorp

Comparison of pedometer and accelerometer measures of physical activity during preschool time on 3- to 5-year-old children

Pate et al., 2006a
R.R. Pate, M.J. Almeida, K.L. McIver, K.A. Pfeiffer, M. Dowda

Validation and calibration of an accelerometer in preschool children
Pate et al., 2006b

Promoting physical activity in children and youth: a leadership role for schools: a scientific statement from the American Heart Association Council on Nutrition, Physical Activity, and Metabolism (Physical Activity Committee) in collaboration with the Councils on Cardiovascular Disease in the Young and Cardiovascular Nursing

Circulation, 114 (2006), pp. 1214–1224

Pfeiffer et al., 2009

K.A. Pfeiffer, M. Dowda, K.L. McIver, R.R. Pate

Factors related to objectively measured physical activity in preschool children

Reilly et al., 2003

J.J. Reilly, J. Coyle, L. Kelly, G. Burke, S. Grant, J.Y. Paton

An objective method for measurement of sedentary behavior in 3- to 4-year olds

Rich et al., 2013

Quality control methods in accelerometer data processing: defining minimum wear time

PLoS One, 8 (2013), p. e67206

Simpson et al., 2003

Sirard et al., 2005
J.R. Sirard, S.G. Trost, K.A. Pfeiffer, M. Dowda, R.R. Pate

Calibration and evaluation of an objective measure of physical activity in preschool children

Tanaka and Tanaka, 2009
C. Tanaka, S. Tanaka

Daily physical activity in Japanese preschool children evaluated by triaxial accelerometry: the relationship between period of engagement in moderate-to-vigorous physical activity and daily step counts

Tremblay et al., 2012
M.S. Tremblay, A.G. Leblanc, V. Carson, L. Choquette, S. Connor Gorber, C. Dillman, et al.

Canadian physical activity guidelines for the early years (aged 0–4 years)

Trost and O’Neil, 2014
S.G. Trost, M. O’Neil

Clinical use of objective measures of physical activity

Tudor-Locke et al., 2004

BMI-referenced standards for recommended pedometer-determined steps/day in children

Tudor-Locke et al., 2013

Normative steps/day values for older adults: NHANES 2005–2006

Vale et al., 2009
S. Vale, R. Santos, L. Soares-Miranda, P. Silva, J. Mota

Preschool children physical activity measurement: importance of epoch length choice

Vale et al., 2010
S. Vale, P. Silva, R. Santos, L. Soares-Miranda, J. Mota

Compliance with physical activity guidelines in preschool children

Vale et al., 2013

Physical activity guidelines and preschooler’s obesity status

Van Cauwenberghe et al., 2011
E. Van Cauwenberghe, V. Labarque, S.G. Trost, I. de Bourdeaudhuij, G. Cardon

Calibration and comparison of accelerometer cut points in preschool children

Vincent and Pangrazi, 2002
S.D. Vincent, R.P. Pangrazi

An examination of the activity patterns of elementary school children

Williams et al., 2008

Motor skill performance and physical activity in preschool children

Obesity (Silver Spring), 16 (2008), pp. 1421–1426