From Mind to Body: Is Mental Practice Effective on Strength Gains? A Meta-Analysis

João Paulo Manochio; Eduardo Lattari; Eduardo Matta Mello Portugal; Renato Sobral Monteiro-Junior; Flávia Paes; Henning Budde; Paulo de Tarso Veras Farinatti; Oscar Arias-Carrión; Mirko Wegner; Mauro Giovanni Carta; Gioia Mura; Nuno Barbosa Ferreira Rocha; Leonardo Ferreira Almada; Antonio Egidio Nardi; Ti-Fei Yuan; Sergio Machado

Abstract

Mental practice is an internal reproduction of a motor act (whose intention is to promote learning and improving motor skills). Some studies have shown that other cognitive strategies also increase the strength and muscular resistance in healthy people by the enhancement of the performance during dynamic tasks. Mental training sessions may be primordial to improving muscle strength in different subjects. The aim of this study was to systematically review and meta-analyze studies that assessed whether mental practice is effective in improving muscular strength. We conducted an electronic-computed search in Pub-Med/Medline and ISI Web of Knowledge, Scielo and manual searchs, searching papers written in English between 1991 and 2014. There were 44 studies in Pub-Med/Medline, 631 in ISI Web of Knowledge, 11 in Scielo and 3 in manual searches databases. After exclusion of studies for duplicate, unrelated to the topic by title and summary, different samples and methodologies, a meta-analysis of 4 studies was carried out to identify the dose-response relationship. We did not find evidence that mental practice is effective in increasing strength in healthy individuals. There is no evidence that mental practice alone can be effective to induce strength gains or to optimize the training effects.

Keywords

Mental practice, motor imagery, imagery, strength training, resistance training, muscle strength, strength.

INTRODUCTION

A better understanding of the motor system network is important in the context of sports and exercise prescription, since an optimal combination of resistance training and skill learning is necessary to improve sports performance [1]. Plastic changes in the central nervous system are well documented in relation to the acquisition of new skills [2]. However, such neural adaptations seem to take place mainly in the initial stages of strength training, [3, 4] and their relative role in long term strength increase is still debated. Traditionally, strength gains during the early stages of resistive training are mostly explained by neural adaptations, especially in untrained individuals [5, 6]. Many studies investigating different variables related to neural adaptation strengthen this premise – for instance, initial adaptations to resistive training would include an increase in the amplitude of electromyographic activity, transient increase in firing rate of motor units (MU), cross-education, reduction of antagonist co-activation, and, perhaps, use of imagined contractions [1]. Mental practice (MP) could be defined as the internal reproduction of a given motor act (mental simulation), which is extensively repeated with the intention of promoting learning or improving a motor skill. The MP is the result of a conscious intention of a movement, which is usually unconsciously performed during motor preparation [7, 8], establishing a relationship between motor events and cognitive perceptions [9]. Previous studies have demonstrated that physiological and psychophysical functions would
be quite similar within performed and imagined movements, indicating that they rely on related processes [10, 11]. For example, experiments using functional magnetic resonance imaging showed that not only supplementary motor area, premotor cortex area, and cerebellum were activated during imagined movements of hand and fingers, but also the contralateral primary motor cortex [2, 12, 13]. Furthermore, it has been observed that contralateral primary motor cortex is activated during MP of complex movements, supporting previous findings suggesting that this area would play an important role in the complex motor sequences [14, 15]. Other cognitive strategies (concentrated focus of attention, preparatory arousal and self-efficacy statements) besides MP can be applied in resistive training and may influence the increase in strength and muscular resistance [16]. These cognitive strategies may temporarily enhance performance during dynamic tasks that require strength or muscular resistance [16-18]. Considering the MP with a cognitive strategies, the characteristics of a successful MP to optimize the gains within resistive training have not been sufficiently described [19]. Furthermore, it would be useful to analyze the available evidence in which concerns the potential effect of MP on strength gains and training adaptations in healthy adults. Therefore, the aim of this study was to investigate by means of meta-analysis whether MP would be effective to induce gains in muscle strength in healthy adults.

MATERIALS AND METHODS

Eligibility Criteria

The structure of the methods in this study will follow the proposals of PRISMA (Preferred Reporting Items is Systematic reviews and Meta-Analyses). Thus, we will adopt the PICOS (population, intervention, compared to control group, outcomes and study design) recommendation to determine the eligibility. 1. Population: healthy young men and/or women, physically active or not, without any neurological disorders or mental disease, aged 18 to 40 years; 2. Intervention: individuals submitted to a condition of MP isolated; 3. Comparators: a control group (i.e., placebo) that have not been received MP intervention; 4. Outcomes: manifestations of muscle strength will be analyzed; 5. Study design: randomized controlled trials and nonrandomized studies that evaluated the effects of chronic mental practice.

Sources

For the collection of studies the electronic databases MEDLINE / PubMed, ISI Web of Knowledge and SciELO will be accessed. Experts on the subject of the present study were also contacted to send articles. To find additional articles, all tables were examined for evidence of previous systematic reviews and found references to randomized controlled trials as necessary. In addition, we analyzed the references of all selected articles. The search was terminated on 20 February 2014.

Search

The keywords used were: Motor Imagery AND Strength Training, Motor Imagery AND Force, Motor Imagery AND Weight Lifting, Mental Practice AND Strength Training, Mental Practice
AND Force, Mental Practice AND Weight Lifting, Movement Imagery AND Weight Lifting, Movement Imagery AND Strength Training, Movement Imagery AND Strength.

Selection of Studies

The selection of studies was performed by two independent researchers that in case of disagreement sought a consensus on the selection. The evaluation consisted of a selection of studies by analysis of the title, followed by analysis of the summary and then the analysis of the full text. With the disagreement between the two researchers, a third one was requested to finish the process. Relevant articles were obtained and assessed for inclusion and exclusion criteria described above.

Data Collection

The following data were extracted from the articles: sample size, participant characteristics, configuration of MP, setting the strength training (intensity, number of sets and repetitions, duration of contractions, rest interval between sets, weekly and total duration), measures of force used in the main studies and significant results. In addition, several other information about the methods and outcomes were collected. These procedures were performed by two independent investigators, who reached a consensus in case of disagreement.

Exclusion Criteria

We excluded articles that had no intervention of MP, those who used other interventions associated with MP the could create a risk of bias in the study. We excluded studies that did not have a control group, the samples of the elderly, children and adolescents, individuals with mental illness or neurological disease that could create a risk of bias in the study. The studies that did not detail the statistical procedure applied, or not presented the results of measurements of muscle strength before and after specific interventions.

Statistical Analysis

We estimated the pooled effect size by standardized mean differences, as the selected studies used different scales of measurement. According to Higgins and Green [20], I2 statistics under 40% suggest that heterogeneity among studies might not be important. Values over 75% indicate considerable heterogeneity, which was the case for the SMD. For this reason we used random effects models that take into account the variance between studies. Forest plots were used to present these findings. They were built in a way that the point estimates (SMD) and 95% CI of individual studies were graphically displayed in each line and the pooled measure was shown at the bottom. Larger Horizontal lines indicate less precise studies (small effect). The columns to the right present the numerical findings and the relative weights received by each study in the process of combining them. Estimates with p values ≤ 0.05 were considered statistically significant whilst values between 0.06 and 0.10 were suggestive of association. All analyses were performed using Stata 10.0.

RESULTS
Based on the defined criteria, a total of 689 articles were found in the search conducted in the literature (44 in Pubmed, 631 ISI Web of Science and in 11 SciELO, 3 in manual search). After the screening, 50 are removed for duplicate, 552 articles were excluded for title or abstract, because they are not related to the theme. The exclusion of the other articles was due to the following factors: use of transcranial magnetic stimulation (TMS) as a tool for intervention [21-23], patients with injuries or disease [24-30], and MP combined with strength training as an intervention for patients with neurological disorders [31, 32], others interventions with MP [33-40], dates without standard deviation [41-45] acute effects [46]. Thus, 4 studies were selected which were properly met the criteria for this review. Fig. (1) describes the selection process of the studies included in this meta-analysis. The characteristics of these studies are described in Table 1. The heterogeneity of the studies was high ($I^2 = 89.7\%$). The result indicated that there was no significant difference between mental practice and control conditions in increasing strength -0.10 (95% CI: -1.46 to 1.24) (Fig. 2).

DISCUSSION

Our study aimed to determine the strength gains from the MP isolated compared to control groups. MP is admittedly able to improve motor gestures and sports skills [46]. There is also evidence that the brain areas involved when a movement is performed are also active during an imagined movement, and that performance on a motor task can be enhanced by MP [47-50]. Being strength gains in the early stages of training, more related to neural aspects [51-54], aspects as these leads us to believe that the gains initial strength can occur even in the absence of movement.

Methodological Differences Between Studies

Different musculature were used among the selected items, which may have contributed to the discrepancies in the results. Schackel et al. [55] used the hip flexors, finding 24% in the MP group and 28% in physical group increases in power with no statistical difference between them, Sidaway et al. [56] used the dorsiflexors finding no statistically similar results of 17% increase for PM and 25% for group strength, Yue and Cole [57] found gains in flexor and abductor musculature of the 5th metacarpal phalangeal finding 32 and 28% increase result statistically lower than the group that did strength training, finally De Ruiter Et al. [58], analyzed the effects of MP on the flexors and knee extensors, finding gains of around 8%, both in groups and in the strength of mental practice. This difference in gains between the musculature can be attributed to the degree of trainability of each muscle, for those less used in task force would possess a greater range of variation as the ratio of distance to the cerebral cortex and the extent of the corticospinal projection monosinápica. Regarding the training time used in the selected studies, the periods used were more than four weeks [56-58] while Shackel et al. [55] used only two weeks. However the number of sessions seems to have been more decisive because Shackel et al. found good results even with only two weeks when using 5 weekly sessions, Yue and Cole [57] conducted the largest number of sessions to train 5 times a week for 4 weeks. Sidaway et al. [56] and De Ruitter et al. [58] used the frequency of 3 times a week for 4 weeks studies that observed with smaller increases 8% and 17%, respectively. Regarding the experimental groups, only Schackel [55] used a sample of individuals trained in strength, while Yue and Cole [57], Sidaway et al. [56] and De Ruitter et al. [58] performed the PM with untrained individuals, all groups consisted of groups of 10 Sidaway et al. [56] unless you have studied with only 8 subjects in each group, in all the papers
mentioned groups were composed of men and women. As the stay time of strength gains, none of the 4 selected studies verified the data after a period of detraining. But as observed in other studies of Ranganathan et al. [43] that after 12 weeks of the end of the training session, they were still above the initial values. Lebon et al. [31] demonstrated that the strength gains remained one week after the end of the workout.

Comparison with Other Studies

Dootchai [59] and Herbert [60] showed that the MP held with the elbow flexors, while the first observed 44% profit the second found only 6%, both studies performed with 3 sessions per week for 8 weeks, with a total of 24 sessions both studies had a higher number of sessions that the studies analyzed in this review, however while Dootchai [59] got great increase Herbert [60] found no significant difference in pre and post conditions. Methodological limitations as to the lack of a control group in the study of Dootchai [59] prevented the inclusion of these in the meta-analysis. Zijdewing et al. [41] used the plantar flexors in a study of 7 week and 5 week sessions, meeting 36% of earnings, higher than the group that trained force, although this has played a workout unsupervised unlike a traditional strength training, which pushed the wall with feet sitting on a cushion. The MP was also studied in combination with traditional training, Lebon et al. [31], compared the two groups strength training only (ST) and its combination with strength training (ST + MP) MP for four weeks, where the group MP + ST performed the MP in the interval between sets of a periodized strength training. The leg press and bench press were performed, significant difference was found in levels of force only on the leg press exercise, this result contradicts the hypothesis of the gains from the MP are higher in areas of higher cortical representation. According to the author, the results can be associated with the magnitude generally greater burden on lower limb exercises and perception of relatively greater effort imposed by such exercise so that mental practice in this range exercise can be generated increased levels of motivation and the regulation of anxiety [61]. Even with experiments demonstrating that mental practice has made gains superior strength to control groups [57, 58] and similar to the group strength [55, 56], the metaanalysis to accomplish this result was not seen. Due to the diversity of methodologies used in the studies, such as frequency, volume and different musculature, found a high discrepancy in the results, making it difficult to establish useful recommendations for the use of MP. Strength gains found may be due to greater familiarization exercises, since favorable results were found in strength gains also in the control groups. Thus we can not assert that mental practice is an effective alternative to provide strength gains, but its application can be an alternative in cases where the impossibility of performing strength training option for maintaining strength during short periods there detraining or as an adjunct to traditional strength training variable.
Fig. (1). Flow chart for the articles included in the meta-analysis.
CONCLUSION

The current evidence does not show that MP alone can be effective to induce strength gains. However, it may be used to optimize the training effects when combined with resistive training protocols. The possible factors underlying the MP effects are not well defined, and may be related to an increase in regional brain blood flow and functional magnetic resonance imaging.
signal, reflecting an increase in synaptic activity, changes in motor unit recruitment, synchronization, or firing rate. This information is useful for practitioners in the fields of motor rehabilitation, sports training, and motor learning.

LIST OF ABBREVIATIONS

MP = Mental Practice

REFERENCES

