An in vivo study to analyse the potential of 188Re-PEI-MP for metabolic radiotherapy of osteosarcoma and bladder carcinoma

S Ferreira1,2,3, M Laranjo1, A Brito1, AM Abrantes1,4, L Metello3, J Zeevart5, W Louw5, I Dormehl6, MF Botelho1,4

1Biophysics Department, Institute of Biomedical Research in Light and Image (IBILI), Faculty of Medicine of the University of Coimbra, Coimbra, Portugal
2School of Sciences, University of Minho, Braga, Portugal
3Nuclear Medicine Course, High Institute of Allied Health Technologies of Porto’s Polytechnic Institute, Porto, Portugal
4Research Centre for Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine of the University of Coimbra, Coimbra, Portugal
5Radiochemistry Department, NECSA, Pretoria, South Africa
6Department of Internal Medicine, University of Pretoria, South Africa

Introduction: 188Re is a promising radionuclide for metabolic therapy because of the emission of high energy beta-particles. The development of water-soluble polymers such as PEI-MP (polyethyleneimine, functionalised with methylphosphonate groups) that might be labeled with 188Re are recent approaches, with a strong potential for metabolic radiotherapy.

Aim: The aim of this study was to evaluate the efficacy of 188Re-PEI-MP, as therapeutic agent for osteosarcoma and bladder carcinoma using an in vivo model.

Material and Methods: To proceed with the in vivo studies, it was investigated the cytotoxicity of PEI-MP in osteosarcoma cell line (MNNG-HOS) and bladder carcinoma cell line (CRL-1472) using the MTT test for different concentrations of PEI-MP (1 µM to 1000 µM) and incubation times (24h, 48h, 72h and 96h). Radiochemical purity of 188Re-PEI-MP was achieved using microchromatography (ITLC-SG/acetone and W3MM/citrate 1M). The in vivo studies were performed using six groups of Balb/c nu/nu mice: two normal groups were injected with Na188ReO$_4$ (n=18) and 188Re-PEI-MP (n=17) respectively; two with osteosarcoma xenotransplants were injected with Na188ReO$_4$ (n=17) and 188Re-PEI-MP (n=19) respectively; and two with bladder
carcinoma xenotransplants were injected with Na188ReO\textsubscript{4} (n=8) and 188Re-PEI-MP (n=12) respectively. When tumor reached the appropriate volume, Na188ReO\textsubscript{4} and 188Re-PEI-MP were administered by an intravenous injection in the tail vein (22-37MBq), with the animal anesthetized and previously placed on the gamma camera detector. Immediately, a dynamic acquisition followed, with a 128x128 matrix for 10 min (20 frames, 30 seconds). Static images (2 min) were performed with a 256x256 matrix, where each of the four groups was divided into two groups, of which one was imaged at 120 minutes, and the other at 240 minutes. For biodistribution proposes, mice were euthanized 2 and 4 hours after injection and organ samples where weighted and counted in a well-counter to obtain percentage injected activity per gram of organ (%ID/g).

Results: The MTT assay showed that PEI-MP is not cytotoxic. The radiochemical purity of 188Re-PEI-MP was \(\geq 90\%\). Biodistribution results, with Na188ReO\textsubscript{4}, showed a higher uptake by the thyroid, bladder and stomach, following a normal biodistribution. The biodistribution with 188Re-PEI-MP showed that the excretion of this complex occurs primarily through the renal system, with a small fraction being eliminated by the hepatobiliary system. In mice with osteosarcoma tumor/muscle ratio was greater than 1.0, and for mice with bladder carcinoma the tumor/muscle ratio was greater than 1.5.

Conclusions: The 188Re-PEI-MP seems to be promising in the treatment of both types of cancer, but with a greater potential for bladder cancer.

It has been decided that it would not be shown the entire version of this document.

To obtain more informations:

www.nucmedonline.net

cursomedicinanuclear@gmail.com