Radiolabeled polyethyleneimonomethyl phosphonic acid as a molecule with potential for diagnosis and therapy. Comparative study on models of bladder cancer and osteosarcoma.

Ferreira S1,2,3, Abrantes AM1,4, Brito A1, Laranjo M1,4, Gonçalves AC4,5, Sarmento-Ribeiro AB4,5, Metello L3, Zeevart J6, Louw W6, Dormehl I7, Botelho MF1,4

1Biophysics Unit, Institute for Biomedical Research on Light and Image, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
2School of Sciences, University of Minho, Braga, Portugal
3Nuclear Medicine Course, High Institute of Allied Health Technologies of Porto’s Polytechnic Institute, Porto, Portugal
4Centre of Investigation on Environment, Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
5Applied Molecular Biology and Hematology Group, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
6Radiochemistry Department, NECSA, Pretoria, South Africa
7Department of Internal Medicine, University of Pretoria, South Africa

Introduction: The polymer PEI-MP (polyethyleneimonomethyl phosphonic acid) that might be labeled with 99mTc and 188Re, have a strong potential for diagnosis and metabolic radiotherapy, respectively. The aim of this study was to evaluate the efficacy of 99mTc-PEI-MP for diagnosis and 188Re-PEI-MP as therapeutic agent, in a comparative study using in vitro and in vivo models of bladder cancer and osteosarcoma.

Material and Methods: In vitro studies were performed using the cell lines of bladder cancer (CRL-1472) and of osteosarcoma (MNNG-HOS). Cytotoxicity of PEI-MP was investigated using
the MTT test and flow cytometry. Radiochemical purity of 188Re-PEI-MP and 99mTc-PEI-MP was achieved using ascending microchromatography. Cellular uptake studies were performed using the complexes 188Re-PEI-MP, 99mTc-PEI-MP, Na188ReO$_4$ and Na99mTcO$_4$. Cell samples were collected during four hours, centrifuged to separate supernatant and pellet. Subsequently, the radioactivity of each portion was counted to determine percentage of uptake. The in vivo studies were performed using twelve groups of Balb/c nu/nu mice: four normal groups injected with Na188ReO$_4$, 188Re-PEI-MP, Na99mTcO$_4$ and 99mTc-PEI-MP, four with bladder carcinoma xenotransplants and four with osteosarcoma xenotransplants injected with the same complexes. After injection of the radiopharmaceuticals, were acquired dynamic and static images for 2 and 4 hours. For biodistribution proposes, mice were euthanized 2 and 4 hours after injection and organ samples where weighted and counted in a well-counter to obtain percentage injected activity per gram of organ (%ID/g).

Results: The MTT assay and flow cytometry tests showed that PEI-MP is not cytotoxic. The radiochemical purity of 188Re-PEI-MP and 99mTc-PEI-MP was \geq85%. The uptake studies demonstrated that the uptake was higher for 188Re-PEI-MP and 99mTc-PEI-MP in relation to their controls, and higher for 188Re-PEI-MP e relation to 99mTc-PEI-MP. Biodistribution results, with Na188ReO$_4$ and Na99mTcO$_4$, showed a higher uptake by the thyroid, bladder and stomach, following a normal biodistribution. The biodistribution with 188Re-PEI-MP and 99mTc-PEI-MP showed that the excretion of these complexes occurs primarily through the renal system, with a small fraction being eliminated by the hepatobiliary system. Tumor/muscle ratio for 188Re-PEI-MP was >1 for the xenotransplants of osteosarcoma and >1.5 to xenotransplants of bladder cancer.

Conclusions: Considering the results, 188Re-PEI-MP seems to be promising in the treatment of both types of cancer, but with a greater potential for bladder cancer. 99mTc-PEI-MP seems to be optimal for diagnosis of both types of cancer.
It has been decided that it would not be shown the entire version of this document.

To obtain more informations:

www.nucmedonline.net

cursomedicianuclear@gmail.com