THE POTENTIAL OF 188Re-PEI-MP FOR METABOLIC RADIOTHERAPY OF BONE TUMORS

Ferreira S.M.1,2,3, Laranjo M.1, Brito A.1, Abrantes A.M.1,4, Metello L.3, Zeevart J.5, Louw W.3, Dormehl I.6, Botelho M.F.1,4

1Biophysics Department, Institute of Biomedical Research in Light and Image (IBILI), Faculty of Medicine of the University of Coimbra, Coimbra, Portugal; 2School of Sciences, University of Minho, Braga, Portugal; 3 Nuclear Medicine Course, High Institute of Allied Health Technologies of Porto’s Polytechnic Institute, Porto, Portugal; 4Research Centre for Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine of the University of Coimbra, Coimbra, Portugal; 5Radiochemistry Department, NECSA, Pretoria, South Africa; 6Department of Internal Medicine, University of Pretoria, South Africa

Introduction: 188Re is a promising radionuclide for metabolic therapy because of the emission of high energy beta-particles. The development of water-soluble bone-seeking polymers such as PEI-MP (polyethyleneimine, functionalised with methylphosphonate-groups) that might be labeled with 188Re are recent approaches, with a strong potential for bone cancer treatment. The aim of this study was to evaluate the efficacy of 188Re-PEI-MP, as therapeutic agent for bone tumours, through in vitro and in vivo models.

Material and Methods: To proceed with the studies, it was investigated the cytotoxicity of PEI-MP in osteosarcoma cell line (MNNG-HOS) using the MTT test for different concentrations of PEI-MP (1 µM to 1000 µM) and incubation times (24h, 48h, 72h and 96h). Radiochemical purity of 188Re-PEI-MP was achieved using microchromatography (ITLC-SG/acetone and W3MM/citrate 1M). In vitro studies were performed in a human osteosarcoma cell-line (MNNG-HOS). Uptake studies were performed using the complex 188Re-PEI-MP, and Na188ReO$_4$ as control tracer. Cell samples were collected during four hours, centrifuged to separate supernatant and pellet. Subsequently, the radioactivity of each portion was counted to determine percentage of uptake. The in vivo studies were performed using four groups of Balb/c nu/nu mice: two normal groups were injected with Na188ReO$_4$ (n=18) and 188Re-PEI-MP (n=17) respectively; two with osteosarcoma xenotransplants were injected with Na188ReO$_4$ (n=17) and 188Re-PEI-MP (n=19) respectively. When tumor reached the appropriate volume, Na188ReO$_4$ and 188Re-PEI-MP were administrated by an intravenous injection in the tail vein (22-37MBq), with the animal anesthetized and previously placed on the gamma camera detector. Immediately, a dynamic acquisition followed, with a 128x128 matrix for 10 min (20 frames, 30 seconds). Static images (2 min) were performed with a 256x256 matrix, where each of the four groups was divided into two groups, of which one was imaged at 120 minutes, and the other at 240 minutes. For biodistribution proposes, mice were euthanized 2 and 4 hours after injection and organ samples where weighted and counted in a well-counter to obtain percentage injected activity per gram of organ (%ID/g).

Results: In vitro results demonstrated that the uptake was higher for 188Re-PEI-MP than for Na188ReO$_4$, remaining constant over time (4h). The MTT assay showed that PEI-MP is not cytotoxic. The radiochemical purity of 188Re-PEI-MP was \geq90%. Biodistribution results, with Na188ReO$_4$, showed a higher uptake by the thyroid, bladder and stomach,
following a normal biodistribution. The biodistribution with 188Re-PEI-MP showed that the excretion of this complex occurs primarily through the renal system, with a small fraction being eliminated by the hepatobiliary system. In mice with osteosarcoma tumor/muscle ratio was greater than 1.0

Conclusions: The 188Re-PEI-MP seems to be promising in the treatment of bone cancer.

It has been decided that it would not be shown the entire version of this document.

To obtain more informations:

www.nucmedonline.net

cursomedicinanuclear@gmail.com