A NEW POSSIBLE APPROACH FOR THERAPY AND FOLLOW UP OF BLADDER CANCER

Ferreira S1,2,3, Abrantes AM1,4, Brito A1, Laranjo M1, Metello L3, Zeevat J5, Louw W5, Dormehl I6, Botelho MF1,4

1Biophysics Unit, Institute for Biomedical Research on Light and Image, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
2School of Sciences, University of Minho, Braga, Portugal
3Nuclear Medicine Course, High Institute of Allied Health Technologies of Porto’s Polytechnic Institute, Porto, Portugal
4Centre of Investigation on Environment, Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
5Radiochemistry Department, NECSA, Pretoria, South Africa
6Department of Internal Medicine, University of Pretoria, South Africa

Introduction: The polymer PEI-MP (polyethylenimine, functionalised with methylphosphonate groups) that might be labelled with 188Re and 99mTc, have a strong potential for metabolic radiotherapy and diagnosis, respectively. The aim of this study was to evaluate the efficacy of 188Re-PEI-MP as therapeutic agent for bladder carcinoma and 99mTc-PEI-MP for its follow up.

Material and Methods: Cytotoxicity of PEI-MP was investigated in bladder carcinoma cell line (CRL-1472) using the MTT test for different concentrations of PEI-MP (1 µM to 1000 µM) and incubation times (24h, 48h, 72h and 96h), and flow cytometry for a concentration of 1000 µM of PEI-MP (24h). Radiochemical purity of 188Re-PEI-MP and 99mTc-PEI-MP was achieved using ascending microchromatography. Cellular uptake studies were performed using the complexes 188Re-PEI-MP, 99mTc-PEI-MP, Na188ReO4 and Na99mTcO4. Cell samples were collected during four hours, centrifuged to separate supernatant and pellet. Subsequently, the radioactivity of each portion was counted to determine percentage of uptake. The in vivo studies were performed using eight groups of Balb/c nu/nu mice: four normal groups injected with Na188ReO4, 188Re-PEI-MP, Na99mTcO4 and 99mTc-PEI-MP and four with bladder carcinoma xenotransplants injected with the same complexes. When tumour reached the appropriate volume, radiopharmaceuticals were administered by an intravenous injection in the tail vein (22-37MBq), with the animal anesthetized and previously placed on the gamma camera detector. After injection of the radiopharmaceuticals, were acquired dynamic and static images for 2 and 4 hours. For biodistribution proposes, mice were euthanized 2 and 4 hours after injection and organ samples where weighted and counted in a well-counter to obtain percentage injected activity per gram of organ (%ID/g).
Results: The MTT assay and flow cytometry tests showed that PEI-MP is not cytotoxic. The radiochemical purity of 188Re-PEI-MP and 99mTc-PEI-MP was ≥85%. The uptake studies demonstrated that the uptake was higher for 188Re-PEI-MP and 99mTc-PEI-MP in relation to their controls, and higher for 188Re-PEI-MP e relation to 99mTc-PEI-MP. Biodistribution results, with Na188ReO$_4$ and Na99mTcO$_4$, showed a higher uptake by the thyroid, bladder and stomach, following a normal biodistribution. The biodistribution with 188Re-PEI-MP and 99mTc-PEI-MP showed that the excretion of these complexes occurs primarily through the renal system, with a small fraction being eliminated by the hepatobiliary system. Tumour/muscle ratio for 188Re-PEI-MP was greater than 1.5.

Conclusions: Considering the results, 188Re-PEI-MP seems to be promising in the treatment of bladder cancer. Following the same biodistribution as 188Re-PEI-MP, 99mTc-PEI-MP seems to be optimal for diagnosis and follow up of therapy.

It has been decided that it would not be shown the entire version of this document.

To obtain more informations:

www.nucmedonline.net

cursomedicinanuclear@gmail.com