Title: Should new Nuclear Reactors be considered as an option to solve Technetium shortage problem?

Authors: Metello LF1,4,6, Cunha L1,4,6, Costa P1,6, Vieira D1,6, Alves F2,6, Botelho MF3, Gelbart W5, Artner C7, Nader M7, Schibli R8, Jensen M9

Affiliation: 1 – Nuclear Medicine Dept, High Institute for Allied Health Technology - ESTSP.IPP, Polytechnic Institute of Porto (Portugal); 2 – ICNAS – Institute for Nuclear Sciences Applied on Health, Univ. of Coimbra (Portugal); 3 – Biophysics & Biomathematics Dept – IBILI, Medical Faculty, Univ. of Coimbra (Portugal); 4 – IsoPor SA – Isotopes for Diagnostic & Therapeutics, SA, Porto (Portugal); 5 – ASD - Advanced Systems Design Inc., Garden Bay (BC – Canada); 6 – CADCTR, Porto (Portugal); 7 – IASON GmbH, Graz (Austria); 8 – ETH – Swiss Federal Institute of Technology, Zurich (Switzerland); 9 – Hevesy Laboratory, DTU - Denmark Technical University, Risoe - Roskilde (Denmark)

Abstract: Worldwide, more than 80% of Nuclear Medicine procedures use a radiotracer produced through a 99Mo/99mTc generator - 99mTc – Technetium 99metastable. Most of the radiochemistry and equipments is optimized for this radioisotope characteristics already for more than 35 years, making it very difficult to replace. Worldwide production of 99Mo is based essentially with only five Nuclear Reactors that are becoming obsolete and fragile with aging, shutting down more and more frequently as they approach the end of their shelf-life. Seeking for solutions, some Governments – and the EU – plan to build new dedicated Nuclear Reactor(s). Our work defends another option.

Foi decidido que não será apresentada a versão integral deste documento.
It has been decided that it would not be shown the entire version of this document.

To obtain more informations:

www.nucmedonline.net

cursomedicinanuclear@gmail.com