The Utilization Bound of Static-Priority Preemptive Partitioned Multiprocessor Scheduling is 50%

Björn Andersson, Member, IEEE

Abstract—This paper studies static-priority preemptive scheduling on a multiprocessor using partitioned scheduling. We propose a new scheduling algorithm and prove that if the proposed algorithm is used and if the requested capacity is request then all deadlines are met. It is known that for every static-priority multiprocessor scheduling algorithm, there is a task set that misses a deadline although the requested capacity is arbitrary close to 50%.

Index Terms—real-time scheduling, partitioning, bin-packing algorithms, static-priority scheduling, preemptive scheduling, multiprocessors.

I. INTRODUCTION

Consider the problem of scheduling a set of n sporadically arriving tasks using preemptive static-priority scheduling on m processors. A task τ_i can arrive many times. These arrival times cannot be controlled by the scheduling algorithm and the scheduling algorithm learns about the exact arrival time at the arrival time — no earlier. The arrival times from the same task τ_i are separated by T_i time units or more. Every time task τ_i arrives, it needs to execute for C_i time units no later than T_i time units after its arrival; otherwise it misses a deadline. C_i is called the execution time of τ_i and for historical reasons, T_i is called the period of τ_i. The utilization bound UB_A of a scheduling algorithm A is a number such that if $\frac{1}{n} \cdot \sum_{\tau_i = 1}^{n} C_i \leq UB_A$ then all tasks meet their deadlines when scheduled by algorithm A.

The design space of preemptive static-priority multiprocessor scheduling algorithms can be categorized as partitioned vs global scheduling. Global scheduling algorithms store tasks that have arrived but not finished its execution in one queue which is shared among all processors. At every moment the m highest priority tasks among the tasks that have arrived but not finished its execution are selected for execution on the m processors using preemption and migration if necessary. Partitioned scheduling algorithms partition the set of tasks such that all tasks in a partition are assigned to the same processor. Tasks are not allowed to migrate, hence the multiprocessor scheduling problem is transformed to many uniprocessor scheduling problems. Common for all static-priority multiprocessor scheduling algorithms is that they cannot have a utilization bound greater than 50% [1], [2].

Partitioned static-priority scheduling is well-studied [1], [3]–[12] but they all have a utilization bound of at most 41% [1], [13], leaving room for improvements.

In this paper, we propose a partitioning algorithm, called R-BOUND-MP-NFR, and prove that it has a utilization bound of 50%. We hence close the problem for partitioning.

We assume that (i) tasks do not use any other resource than a processor and (ii) a task can always be preempted and there is no overhead associated with a preemption.

The remainder of this paper is organized as follows. Section II gives a background on partitioned scheduling and in particular it shows the necessary ingredient to achieve a utilization bound greater than 41%. Section III studies partitioned scheduling when periods are restricted. This restriction is removed in Section IV. Section V quantifies how many more task sets that can be guaranteed by the new utilization bound. Finally, Section VI closes with a discussion, presents conclusions and future work.

II. PARTITIONED SCHEDULING

The partitioned method divides tasks into partitions, each having its own dedicated processor. Unfortunately, the problem of deciding whether a schedulable partition exist is NP-complete [12]. Therefore many heuristics for partitioning have been proposed, a majority of which are versions of the bin-packing algorithm\(^1\). These bin-packing algorithms rely on a schedulability test in order to know whether a task can be assigned to a processor or not. This reduces our problem from partitioning a set of tasks to meet deadlines into the problem of partitioning a set of tasks such that, on every processor, the schedulability test can guarantee that all tasks on that processor meet their deadlines. As a schedulability test, a natural choice is to use the knowledge that: if $\sum_{i=1}^{n} u_i \leq n_p \cdot (2^{1/n_p} - 1)$ and rate-motonic is used to schedule tasks on processor p then all deadlines are met [14]. (Let $u_i = C_i/T_i$ and n_p denote the number of tasks assigned to processor p.) This schedulability test is often used, but as shown in Example 1 below, this bound is not tight enough to allow us to design a multiprocessor scheduling algorithm with a utilization bound of 50%.

Example 1: Consider $m + 1$ tasks with $T_i = 1$ and $C_i = \sqrt{2} - 1 + \epsilon$ to be scheduled on m processors. For this system, there must be a processor p which is assigned two tasks. On that processor the utilization is $\sum_{i=1}^{n_p} C_i/T_i = 2 \cdot (\sqrt{2} - 1 + \epsilon)$

\(^1\)The bin-packing algorithm works as follows: (1) sort the tasks according to some criterion; (2) select the first task and an arbitrary processor; (3) attempt to assign the selected task to the selected processor by applying a schedulability test for the processor; (4) if the schedulability test fails, select the next available processor; if it succeeds, select the next task; (5) goto step 3.
which is greater than $2 \cdot (\sqrt{2} - 1)$. Hence, there is no way
to partition tasks so that all tasks can be guaranteed by this
schedulability test to meet deadlines. We can do this reasoning
for every m and every e. By letting $\epsilon \to 0$ and $m \to \infty$ we can
see that UB for algorithms that are based on this schedulability
test cannot be greater than $\sqrt{2} - 1$, which is approximately
41%.

Note that the task set in Example 1 could actually be
guaranteed by a necessary and sufficient schedulability test to
meet deadlines (provided that e is not too large). It is known
that if all tasks are harmonic\(^2\) then the uniprocessor utilization
bound is 100%,3 and then the task set in Example 1 could
be assigned with two tasks on one processor. A uniprocessor
schedulability test that could exploit this information could
allow a multiprocessor scheduling algorithm to achieve a
utilization bound of 50%. This is what we will do.

R-BOUND [10] is a uniprocessor schedulability test which
exploits harmonicity. Let r_p denote the fraction between the
maximum and the minimum period among the tasks assigned
to processor p. If we restrict our attention to the case when
\(\forall p : 1 \leq r_p < 2 \) (we will relax this restriction later), we have
the following theorem (from [10]).

Theorem 1: Let $B(r_p, n_p) = n_p(r_p^{1/n_p} - 1) + 2/r_p - 1$. If
\(\sum_{d=1}^{n_p} C_d / T_d \leq B(r_p, n_p) \) and rate-monotonic is used to
schedule tasks on processor p then all deadlines are met.

R-BOUND-MP is a previously known multiprocessor scheduling algorithm that exploits R-BOUND [10].
R-BOUND-MP combined R-BOUND with a first-fit bin-packing
algorithm. However, its utilization bound is not known and
it is difficult to analyze. For this reason, in order to show
which utilization bound a partitioned scheduling algorithm can
achieve, we will design two derivatives of R-BOUND-MP.
First, we will consider an algorithm R-BOUND-MP-NFRNS
(R-BOUND-MP with next-fit-ring noscaling) and prove its
utilization bound when $1 \leq \frac{\max_{d \in \tau} T_d}{\min_{d \in \tau} T_d} < 2$. (\(\tau \) denotes
the set of all n tasks.) Then we will consider the algorithm
R-BOUND-MP-NFR (R-BOUND-MP with next-fit-ring) and
prove its utilization bound when periods are not restricted.

III. Restricted periods

In this section, we assume that $1 \leq \frac{\max_{d \in \tau} T_d}{\min_{d \in \tau} T_d} < 2$ holds. Clearly it means that no matter how many tasks to
processors, it holds that $\forall p : 1 \leq r_p < 2$ and hence
Theorem 1 can be used. We will use the algorithm R-BOUND-
MP-NFRNS, illustrated in Algorithm 1. It works as follows:
(i) sort tasks in ascending order of periods, that is, the task
with the shortest period is considered first, (ii) use Theorem 1
as a schedulability test on each uniprocessor, (iii) assign
tasks with the next-fit bin-packing algorithm and (iv) when
a task cannot be assigned to processor m, try to assign it on
processor 1, if this does not work then declare FAILURE. If
the algorithm terminates and has partitioned the whole task set
\(^2\)In a harmonic task set, the periods T_1 and T_2 of any two tasks τ_1 and
τ_2 are related as follows: either T_1 is an integer multiple of T_2, or T_2 is an
integer multiple of T_1.
\(^3\)This is easy to see by dropping the ceiling in the equations/inequalities in
exact schedulability tests [15], [16].

Algorithm 1: R-BOUND-NP-NFRNS, a task-to-processor assignement algorithm.

Input: A task set τ.
Output: An assignment of a task to a processor.

1: Sort tasks such that $T_1 \leq T_2 \leq \ldots \leq T_n$.
2: $i := 1$
3: $j := 1$
4: while ($i \leq n$) loop
5: if no task has been assigned to processor j then
6: assign task τ_i to processor j.
7: $i := i + 1$.
8: else
9: Let $\tau_{p,j}$ denote the first task that
10: was assigned to processor j.
11: Let α_j denote $T_i / T_{p,j}$.
12: Let n_j denote the number of tasks assigned to processor j.
13: Let UPROCESSOR_j denote the sum of the
14: utilization of all tasks assigned to processor j.
15: $\text{UBOUND}_j := (n_j + 1) \cdot (\alpha_j^{1/(n_j+1)} - 1) + 2/\alpha_j - 1$
16: if $\text{UPROCESSOR}_j + C_i / T_i \leq \text{UBOUND}_j$ then
17: assign task τ_i to processor j.
18: $i := i + 1$.
19: else
20: if $j = m$ then
21: Let n_m denote the number of tasks assigned to
22: processor 1.
23: Let UPROCESSOR_1 denote the sum of the
24: utilization of all tasks assigned to processor 1.
25: $\text{UBOUND}_1 = (n_m + 1) \cdot (2^{1/(n_m+1)} - 1)$
26: if $\text{UPROCESSOR}_1 + C_i / T_i \leq \text{UBOUND}_1$ then
27: assign task τ_i to processor 1.
28: $i := i + 1$.
29: else
30: declare failure.
31: end if
32: else
33: $j := j + 1$.
34: end if
35: end if
36: end if
37: end loop
38: declare success.

then the algorithm declares SUCCESS. Example 2 illustrates
the workings of our algorithm R-BOUND-MP-NFRNS.

Example 2: Consider 4 tasks with \(\{ (T_1 = 1, C_1 = 0.1), (T_2 = 1.1, C_2 = 0.935), (T_3 = 1.2, C_3 = 0.084), (T_4 = 1.3, C_4 = 0.26) \} \) to be scheduled on 2 processors using
R-BOUND-MP-NFRNS. The algorithm sorts the tasks in ascending
order of periods. In this example, sorting does not change the
indices. We can compute the utilizations of tasks:
$u_1 = 0.1$, $u_2 = 0.85$, $u_3 = 0.07$, and $u_4 = 0.2$.

The current processor is processor 1. (The variable $j,
initialized on line 3 in Algorithm 1 keeps track of this.) Tasks are
now assigned in order. τ_1 is assigned to processor 1. Then τ_2
is attempted to be assigned to processor 1, but it fails because
the $T_2 / T_1 = 1.1$, and $n_1 + 1 = 2$ gives a utilization bound
0.915 for these two tasks, and the sum of utilization of these
two tasks is 0.95. Hence τ_2 is assigned to processor 2.

Now, processor 2 is the current processor. τ_3 is attempted to
be assigned to processor 2, and it succeeds because $T_3 / T_2 =
1.2 / 1.1 = 1.09$, and $n_2 + 1 = 2$ gives a utilization bound
0.922 for these two tasks, and the sum of utilization of these
two tasks is 0.92.

Processor 2 is still the current processor. \(\tau_4 \) is attempted to be assigned to processor 2, but it fails because \(\max(T_2, T_3, T_4) / \min(T_2, T_3, T_4) = 1.3 / 1.1 = 1.18 \) and \(n_2 + 1 = 3 \) gives a utilization bound 0.86 for these three tasks, and the sum of utilization of these three tasks is 1.12. Since processor 2 is the last processor and \(\tau_4 \) failed, we make an attempt to assign \(\tau_4 \) to the first processor, that is, processor 1. This succeeds because \(n_1 + 1 = 2 \) gives a utilization bound 0.828 for these two tasks, and the sum of utilization of these two tasks is 0.3. Hence \(\tau_2 \) is assigned to processor 1. \(\square \)

Now that we have stated the algorithm R-BOUND-MP-NFRNS and seen its operation in an example, we are ready to prove its performance. Theorem 2 does that.

Theorem 2 (Utilization bound of R-BOUND-MP-NFRNS): If R-BOUND-MP-NFRNS is used and \(T_1 \leq T_2 \leq \ldots \leq T_n \) and \(T_n / T_1 < 2 \) and \(\frac{1}{m} \sum_{i=1}^{n} u_i \leq 1/2 \), then R-BOUND-MP-NFRNS will find a partitioning (declare SUCCESS).

Proof: We will derive a lower bound on the utilization of task sets that declared failure. We will do so by first phrasing necessary conditions on a task set that declared failure. We will then formulate a minimization problem which offers a lower bound on the utilization of a task set that declared failure. And then, we will state a sequence of other minimization problems where the objective function to each of them is a lower bound on the objective function to a previous minimization problem in the sequence.

Let us consider any arbitrary task set that caused R-BOUND-MP-NFRNS to declare failure. If it was not the last task (the one with the longest period) that failed, then we can always remove the task that had a higher index than the failed task, and then the utilization would be lower. Hence, we can assume that it was the task with the greatest index that failed. Let \(\tau_{\text{failed}} \) denote that task.

We will now consider the situation when R-BOUND-MP-NFRNS failed and use the following notation. Let \(\tau_{ijk} \) be the task that is the \(k \)-th task assigned to processor \(j \). Let \(\alpha_1 \) denote \(T_{p12} / T_{p11} \). Let \(\alpha_2 \) denote \(T_{p31} / T_{p21} \). \ldots Let \(\alpha_m \) denote \(T_{\text{failed}} / T_{p11} \). Let \(n_j \) denote the number of tasks that are assigned to processor \(j \); \(n_1 \) requires further explanation because we assign tasks to processor 1 in two states: first when no processor has been assigned a task, and later when all processors have been assigned a task. We let \(n_1 \) denote the number of tasks assigned to processor 1 when R-BOUND-MP-NFRNS declared failure. \(n_j \) denotes the number of tasks assigned to processor 1 when \(\tau_{p21} \) was assigned to processor 2.

Task \(\tau_{p21} \) could not be assigned to processor 1 because the schedulability test in Theorem 1 failed. Hence, on processor 1 it holds that:
\[
\begin{align*}
 u_{p11} + \left(\sum_{k=2}^{n_1} u_{p1k} \right) + u_{p21} &> (n_1 + 1)(\alpha_1^{\frac{1}{n_1+1}} - 1) + \frac{2}{\alpha_1} - 1 \\
 \text{(1)}
\end{align*}
\]

In the same way, on processor 2, it holds that:
\[
\begin{align*}
 u_{p21} + \left(\sum_{k=2}^{n_2} u_{p2k} \right) + u_{p31} &> (n_2 + 1)(\alpha_2^{\frac{1}{n_2+1}} - 1) + \frac{2}{\alpha_2} - 1 \\
 \text{(2)}
\end{align*}
\]

And so on, until processor \(m \), where it holds that:
\[
\begin{align*}
 u_{pm1} + \left(\sum_{k=2}^{n_m} u_{pmk} \right) + u_{\text{failed}} &> (n_m + 1)(\alpha_m^{\frac{1}{n_m+1}} - 1) + \frac{2}{\alpha_m} - 1 \\
 \text{(3)}
\end{align*}
\]

Our algorithm R-BOUND-MP-NFRS attempts to assign \(\tau_{\text{failed}} \) to processor 1. It fails so the schedulability test must have failed. Here we do not know anything about the relationships between the periods (other than \(1 \leq T_{\text{failed}} / T_1 < 2 \)). Hence we have:
\[
\begin{align*}
 u_{p11} + \left(\sum_{k=2}^{n_1} u_{p1k} \right) + (\sum_{k=n_1+1}^{n_1'} u_{p1k}) + u_{\text{failed}} &> (n_1' + 1)(\frac{2}{n_1' + 1} - 1) \\
 \text{(4)}
\end{align*}
\]

Since we want to derive a utilization bound we have the following problem:
\[
\begin{align*}
 \text{minimize } U_s = \frac{1}{m} \cdot (u_{p11} + \left(\sum_{k=2}^{n_1} u_{p1k} \right) + u_{p21} + \left(\sum_{k=2}^{n_2} u_{p2k} \right) + \ldots + u_{pm1} + \left(\sum_{k=2}^{n_m} u_{pmk} \right) + (\sum_{k=n_1+1}^{n_1'} u_{p1k}) + u_{\text{failed}}) \\
 \text{subject to } U_s &
\end{align*}
\]

Inequalities 1–4 and subject to
\[
\begin{align*}
 0 &< u_{p1j} \leq 1, \forall i, j \\
 \alpha_1 \cdot \alpha_2 \cdot \ldots \cdot \alpha_m &< T_{\text{failed}} / T_{p11} < 2 \\
 1 &\leq \alpha_i, \forall i \\
 \text{(5)}
\end{align*}
\]

Note that the constraints Inequality 6 and Inequality 7 follow immediately from \(T_1 \leq T_2 \leq \ldots \leq T_n \) and \(T_n / T_1 < 2 \), which we assumed in the theorem.

We make a relaxation on Inequalities 1–4 by replacing \(\geq \) by \(> \) and relax Inequality 5 to \(0 \leq u_{p1j} \) and relax Inequality 6 by replacing \(< \) by \(\leq \).

One can see that \((n_i + 1)(\alpha_i^{\frac{1}{n_i+1}} - 1) \) monotonically decreases with increasing \(n_i \). We can compute \(\lim_{n_i \rightarrow \infty} (n_i + 1)(\alpha_i^{\frac{1}{n_i+1}} - 1) = \ln \alpha_i \). Hence we have:
\[
\begin{align*}
 (n_i + 1)(\alpha_i^{\frac{1}{n_i+1}} - 1) \geq \ln \alpha_i \\
 \text{(8)}
\end{align*}
\]

In the same way, we have:
\[
\begin{align*}
 (n_1' + 1)(\frac{2}{n_1' + 1} - 1) \geq \ln 2 \\
 \text{(9)}
\end{align*}
\]

Using Inequality 8 and Inequality 9, we can relax Inequalities 1–4. All these relaxations change the constraints such that a point which satisfied all constraints will also satisfy the new constraints. We now have the problem:
minimize \(U_s = \frac{1}{m} \cdot (u_{p11} + (\sum_{k=2}^{n_1} u_{pk}l) + u_{p21} + (\sum_{k=2}^{n_2} u_{pk}) + \ldots + u_{pm1} + (\sum_{k=2}^{n_m} u_{pk}m) + u_{failed}) \)

subject to:

\[
\begin{align*}
 u_{p11} + (\sum_{k=2}^{n_1} u_{pk}) + u_{p21} & \geq \ln \alpha_1 + 2/\alpha_1 - 1 \\
 u_{p21} + (\sum_{k=2}^{n_2} u_{pk}) + u_{p31} & \geq \ln \alpha_2 + 2/\alpha_2 - 1 \\
 \cdots \\
 u_{pm1} + (\sum_{k=2}^{n_m} u_{pk}m) + u_{failed} & \geq \ln \alpha_m + 2/\alpha_m - 1
\end{align*}
\]

\[
\begin{align*}
 u_{p11} + (\sum_{k=2}^{n_1} u_{pk})l + u_{p1k} & \geq \ln 2 \\
 u_{p1k} & = 0, \forall k \geq 2
\end{align*}
\]

Note that \(u_{p1} \) is permitted to be greater than 1.

If \(\alpha_1 \cdot \alpha_2 \cdot \ldots \cdot \alpha_m < 2 \) then we can increase any \(\alpha_i \) so that \(\alpha_1 \cdot \alpha_2 \cdot \ldots \cdot \alpha_m = 2 \). This clearly does not affect the objective function. Neither does it violate any constraints because \(\frac{\alpha}{\ln \alpha + 2/\alpha - 1} \) can be computed to \(\frac{1}{\alpha_1} \cdot (\alpha_i - 2) \) and this is non-positive because \(\alpha_i \leq 2 \). \(\alpha_i \leq 2 \) follows from \(\alpha_1 \cdot \alpha_2 \cdot \ldots \cdot \alpha_m = 2 \) and \(1 \leq \alpha_i \). Hence we have the problem:

minimize \(U_s = \frac{1}{m} \cdot (u_{p11} + u_{p21} + \ldots + u_{pm1} + (\sum_{k=2}^{n_m} u_{pk}m) + u_{failed}) \)

subject to:

\[
\begin{align*}
 u_{p11} + u_{p21} & \geq \ln \alpha_1 + 2/\alpha_1 - 1 \\
 u_{p21} + u_{p31} & \geq \ln \alpha_2 + 2/\alpha_2 - 1 \\
 \cdots \\
 u_{pm1} + u_{failed} & \geq \ln \alpha_m + 2/\alpha_m - 1
\end{align*}
\]

\[
\begin{align*}
 0 & \leq u_{p1j}, \forall i,j \\
 \alpha_1 \cdot \alpha_2 \cdot \ldots \cdot \alpha_m & = 2 \\
 1 & \leq \alpha_i, \forall i
\end{align*}
\]

We can add \((\sum_{k=1}^{n_1} u_{pk}) \) to the lhs of Equality 21; every feasible point will remain feasible in this way. Then, we can always move to a new point (with variables having “new” in its superscript) which satisfies all constraints and does not increase the objective function in the following way:

\[
\begin{align*}
 u_{new}^{failed} & = u_{failed} + (\sum_{k=2}^{n_m} u_{pk}) \\
 u_{new}^{p1k} & = 0, \forall k \geq n_1 + 1
\end{align*}
\]

Note that \(u_{p1} \) is permitted to be greater than 1.

Now the term \((\sum_{k=1}^{n_1} u_{pk}) \) has disappeared from Equality 22. Note that in Inequalities 19–22, each variable \(u_{pk} \) and \(u_{failed} \) show up in exactly two constraints. Summing the left-hand side of Inequalities 19–22 and dividing by two gives us a lower bound on the objective function. We can also relax the problem by dropping Equality 23 and Equality 25. Hence we have the problem:

minimize \(U_s = \frac{1}{m} \cdot (\ln 2 + \ln \alpha_1 + 2/\alpha_1 - 1 + \ln \alpha_2 + 2/\alpha_2 - 1 + \ldots + \ln \alpha_m + 2/\alpha_m - 1) \)

subject to:

\[
\begin{align*}
 \alpha_1 \cdot \alpha_2 \cdot \ldots \cdot \alpha_m & = 2
\end{align*}
\]

A necessary condition for a local minimizer is that the gradient of the Lagrangian function is zero (see for example Theorem 14.1 in [17]). Let \(\lambda \) denote the Lagrange multiplier for \(\alpha_1 \cdot \alpha_2 \cdot \ldots \cdot \alpha_m = 2 \). Using this gives us that a necessary condition for a local minimizer is:

\[
\begin{align*}
 \frac{1}{m} \cdot (\frac{1}{2} \cdot (1/\alpha_1 - 2/\alpha_2^2)) \cdot \lambda \cdot \alpha_2 \cdot \alpha_3 \cdot \alpha_4 \cdot \ldots \cdot \alpha_m &= 0 \\
 \frac{1}{m} \cdot (\frac{1}{2} \cdot (1/\alpha_2 - 2/\alpha_3^2)) \cdot \lambda \cdot \alpha_1 \cdot \alpha_3 \cdot \alpha_4 \cdot \ldots \cdot \alpha_m &= 0
\end{align*}
\]
Algorithm 2 Scale Task Set.

Input: A task set \(\tau \). **Output:** Another task set \(\tau' \).

1. \(q = \max(T_1, T_2, \ldots, T_n) \)
2. for each \(i \in \tau \)
3. \(T_{i}' = T_i \cdot \frac{q}{2} / T_i \)
4. \(C_i' = C_i \cdot \frac{q}{2} / T_i \)
5. end for
6. sort tasks in \(\tau' \) in increasing period
7. return \(\tau' \)

\[
\frac{1}{m} \left(\frac{1}{2} \cdot \left(\frac{1}{\alpha_3} - 2 \frac{1}{\alpha_2^2} \right) - \lambda \cdot \alpha_1 \cdot \alpha_2 \cdot \alpha_4 \cdots \alpha_m = 0 \right)
\]

\[
\frac{1}{m} \cdot (2 - 1/\alpha_1) = 4 \lambda
\]

\[
\frac{1}{m} \cdot (2 - 1/\alpha_2) = 4 \lambda
\]

\[
\cdots
\]

\[
\frac{1}{m} \cdot (2 - 1/\alpha_m) = 4 \lambda
\]

This implies that:
\[
\alpha_1 = \alpha_2 = \ldots = \alpha_m
\]

We now have the following problem:

\[
\text{minimize } U_s = \frac{1}{2m} \cdot (\ln 2 + m \cdot (\ln \alpha_1 + 2/\alpha_1 - 1))
\]

subject to \(\alpha_1^m = 2 \).

Rewriting yields:

\[
\text{minimize } U_s = \frac{\ln 2}{2m} + \frac{1}{2} \left(\ln \left(\frac{2^{1/m}}{m} \right) + \frac{2}{2^{1/m}} - 1 \right)
\]

We compute \(\frac{\partial U_s}{\partial \alpha_1} < 0 \) and \(\lim_{m \to \infty} U_s = 1/2 \). Hence we have that \(U_s \geq 1/2 \).

This states the theorem.

IV. NOT RESTRICTED PERIODS

In this section, we will see that if task periods are not restricted as they were in the previous section then it is possible to scale the periods and execution times of all tasks such that the restriction holds. This is meaningful because we will use a theorem which claims that if the scaled task set meets all deadlines then the task set which is not scaled also meets its deadlines.

Consider two task sets \(\tau \) and \(\tau' \). \(\tau' \) is not restricted. \(\tau' \) is computed from \(\tau \) according to Algorithm 2. Note that Algorithm 2 does not change the utilization of tasks. In addition we know that (from [10]):

Theorem 3: Given a task set \(\tau \), let \(\tau' \) be the task set resulting from the application of the algorithm Scale Task Set to \(\tau \). If \(\tau' \) is schedulable on one processor using rate-monotonic scheduling, then \(\tau \) is schedulable on one processor with rate-monotonic scheduling.

Now let R-BOUND-MP-NFR (R-BOUND-MP with next-fit-ring) be an algorithm which works as follows. First, each task in \(\tau \) is transformed according to Algorithm 2 into \(\tau' \) and then the tasks in \(\tau' \) are assigned according to R-BOUND-MP-NFRNS. We can see that every task in \(\tau \) has a corresponding task in \(\tau' \), so \(\tau' \) is assigned to the processor where \(\tau' \) is. We are now ready to state our utilization bound of R-BOUND-MP-NFR when tasks are not restricted.

Theorem 4: If R-BOUND-MP-NFR is used and \(\sum_{i=1}^{n} u_i \leq m/2 \) then R-BOUND-MP-NFR will find a partitioning (declare SUCCESS).

Proof: The proof is by contradiction. Suppose that the theorem was false. Then there would exist a task set \(\tau \) with \(\sum_{i=1}^{n} u_i \leq m/2 \) which failed. The first thing that R-BOUND-MP-NFR does is to scale the task set, so a scaled task set \(\tau' \) will also declare failure when scheduled by R-BOUND-MP-NFRNS. Since \(u_i \) of a task does not change when it is scaled, we have that \(\tau' \) (which failed) has \(\sum_{i=1}^{n} u_i \leq m/2 \). But this is impossible according to Theorem 2.

V. QUANTIFYING THE NUMBER OF TASK SETS THAT CAN BE GUARANTEED

Previous sections, showed that the new algorithm increases the utilization bound of partitioning, from 41% to 50%. We will now see how many extra task sets that can be guaranteed to meet deadlines thanks to the increase in utilization bound. We do so using an approach from previous work on analysis of uniprocessor scheduling [21]. Let \(u_i \) be defined as \(u_i = C_i / T_i \) and let \(w = u_1, u_2, \ldots, u_n > 0 \). Then, the measure of the region of all task sets that is guaranteed by a utilization bound UB is defined as:

\[
L_n(UB \cdot m) = \{ u \in R^n : u_i \geq 0, \sum_{i=1}^{n} u_i \leq UB \cdot m \} \quad (29)
\]

From [21] we obtain:

\[
[L_n(A)] = \frac{A^n}{n!} \quad (30)
\]

Combining Equality 30 and Equality 29 yields \(L_n(UB \cdot m) = \frac{(UB \cdot m)^n}{n!} \). Analogous to [21], let the gain of the new test be defined as:

\[
\rho_n = \frac{L_n(0.5 \cdot m)}{L_n((\sqrt{2} - 1) \cdot m)}
\]

This gives us:

\[
\rho_n = \left(\frac{0.5}{\sqrt{2} - 1} \right)^n \approx 1.207106783^n \quad (31)
\]

We can see that the gain approaches infinity as \(n \) approaches infinity. This is in contrast with work on uniprocessor schedulability analysis [21], which offered a finite gain \(\sqrt{2} \). Hence, we conclude that the new bound offers a significant increase in the number of task sets that can be guaranteed as compared to the previously known best bound.
VI. DISCUSSIONS AND FUTURE WORK

We have proven a tight utilization bound for static-priority preemptive partitioned static-priority scheduling. Our bound of 50% for partitioned static-priority scheduling is no worse than the best bound of partitioned scheduling using EDF on each uniprocessor [18]. This implies that although dynamic priorities are beneficial in scheduling algorithms with migration (see for example algorithm PF [19]), they offer no benefit in non-migrative scheduling if utilization bound is the performance metric of choice. We left open two important questions in partitioned scheduling: (i) Can R-BOUND-MP (the original algorithm, not our R-BOUND-MP-NFR) achieve a utilization bound of 50%? and (ii) Can other bin-packing schemes, which do not exploit harmonicity, achieve a utilization bound of 50%?

We assumed the restriction that a task has a deadline which is equal to its period. It would be interesting to create an algorithm for task set where this restriction does not hold. Unfortunately, for such a case, the notion of utilization bound does not apply; we have to resort to another performance metric. One such metric is the

\[
\text{competitive factor} \quad c(f) = \frac{\text{response time} + \text{elapsed time}}{\text{computation time}}
\]

We say that a partitioning algorithm A has a competitive factor \(c(f) \) if it can schedule every task set that any other scheduling algorithm \(A' \) can schedule if the processors provided to algorithm \(A \) is \(\frac{1}{c(f)} \) times faster than the processors provided to the other algorithm. We can see that an algorithm with a utilization bound \(UB \) has a competitive factor \(c(f) = 1/UB \). Using this relationship gives our new algorithm a competitive factor of 2. Recently, the scheduling of tasks with static-priority preemptive scheduling using deadline monotonic [12] without the restriction on the deadline was considered [20, page 328]. Unfortunately, even allowing pseudo-polynomial-time-complexity, the competitive factor of the proposed algorithm was 3.

ACKNOWLEDGMENT

The author is grateful to the reviewers for suggested improvements of the paper. This work was supported by the Swedish Foundation for Strategic Research via the national Swedish Real-Time Systems research initiative ARTES and by the Portuguese Science Foundation, Fundação para Ciência e Tecnologia (FCT).

REFERENCES