Inventories and concentration profiles of 137Cs in undisturbed soils in the northeast of Buenos Aires Province, Argentina

M.L. Montes, L.M.S. Silva, C.S.A. Sá, J. Runco, M.A. Taylor, J. Desimoni

A B S T R A C T

Inventories and vertical distribution of 137Cs were determined in La Plata region undisturbed soils, Argentina. A mean inventory value of 891 ± 220 Bq/m2 was established, which is compatible with the values expected from atmospheric weapon tests fallout. The study was complemented with pH, organic carbon fraction, texture and mineralogical soil analyses. Putting together Southern Hemisphere 137Cs inventory data, it is possible to correlate these data with the mean annual precipitations. The large differences in 137Cs concentration profiles were attributed to soil properties, especially the clay content and the pH values.

A convection–dispersion model with irreversible retention was used to fit the activity concentration profiles. The obtained effective diffusion coefficient and effective convection velocity parameters values were in the range from 0.2 cm2/y to 0.4 cm2/y and from 0.23 cm/y to 0.43 cm/y, respectively. These data are in agreement with values reported in literature. In general, with the growth of clay content in the soil, there was an increase in the transfer rate from free to bound state. Finally, the highest transfer rate from free to bound state was obtained for soil pH value equal to 8.

Keywords:

137Cs
Soil Inventory
Vertical distribution
Convection–dispersion–fixation approach

1. Introduction

Most of the radioactive fallout coming from atmospheric nuclear weapon tests, carried out between 1955 and 1974 in South Atlantic and Pacific, have been spread in the Southern Hemisphere environmental matrices (UNSCEAR, 2000, 2008). At present, 137Cs is the only anthropogenic gamma emitter found in these soils (UNSCEAR, 2000, 2008) encouraging the investigation on 137Cs inventory and its transport behavior. The principal factors affecting 137Cs migration in the soil are, among others, pH, organic matter content, textural class, mineralogy, competitive ions and concentration of radionuclides in the soil–liquid phase (Sawhney, 1964; Cornell, 1993; Staunton et al., 2002; Giannakopoulou et al., 2007; Singh et al., 2009). Cesium migration in soils is a very slow process and its retention is generally admitted to be controlled by weathered mica (Delvaux et al., 2000). Some micaceous minerals, such as illite and vermiculite, tend to catch Cs in their interlayers. There are two different processes to be considered, the structural fixation and the reversible selective sorption (Sawhney, 1972; Wauters et al., 1996; Poinssot et al., 1999; Konoplev et al., 2002). A fraction of 137Cs might be either taken by plant roots and pasture, or reached the groundwater.

Two approaches for modeling the migration of radionuclides in soils have been used, the convection–dispersion equation (ODCDE) with constant parameters, known as the Fokker–Planck equation (Likar et al., 2001; Bossew and Kirchner, 2004) and the serial compartmental model (Kirchner, 1998; Schuller et al., 1997). The ODCDE approach is the most used model to estimate the 137Cs transport parameters. However, several mechanisms such as bioturbation and horizontal transport may induce deviations from their predictions. Moreover, irreversible retention of the 137Cs by specific minerals should also be considered, particularly when their concentration in the soil is important. Some authors have developed diffusion–convection–fixation models (ODCFE) to analyze 137Cs in soil coming from the Chernobyl accident. However, the convection process was disregarded because of the short time since the accident (Antonopoulos-Domis et al., 1995; Toso and Velasco, 2001).

In Argentina, the 137Cs deposit has been established in Buenos Aires city from 1960 to 2002 (Callella et al., 2003). Furthermore, 137Cs soil profiles have been determined in the Pampa Ondulada region of Buenos Aires Province. Argentina (Bujan et al., 2000, 2003) and in natural and semi-natural grassland areas of San Luis Province (Juri Ayub et al., 2007, 2008). Buenos Aires Province is an important agricultural and industrial area where nuclear power plants (Nucleoeléctrica Argentina, 2012) and research reactors are located (CNEA, 2012). These facilities add to...
the natural inventory small amounts of anthropogenic radionuclides. Despite the long period of nuclear activity in the region and the re-taken of the nuclear program in Argentina (CNEA, 2012; Carlos Rey, 2007), no systematic study has been carried out until now to establish the radiological conditions.

This article presents the determination and analysis of the 137Cs inventories as well as a study of the vertical migration processes in soils of La Plata region, Buenos Aires, Argentina. A soil physico-chemical characterization was done considering the principal factors affecting the 137Cs transport process. The profiles have been analyzed using the ODCDFE approach (Antonopoulos-Domis et al., 1995; Toso and Velasco, 2001). To our knowledge, this is the first time that this model will be applied in a complete form, i.e., considering that the three processes, diffusion, convection and fixation simultaneously.

2. Methodology

2.1. Studied region

In the vicinity of La Plata city, two main geo-morphological units can be identified: i) the area of estuary-marine influence and ii) the area of continental influence, called hereafter coastal and inland soils, respectively. Regarding the topography, the first one is a low plain with a coast relief between 0 and 5 m above the sea level, covered by marine and fluvial deposits. Previous studies reported clay fraction from 57 to 70% in surface (Giménez et al., 2005; Hurtado et al., 2006a,b). The inland area is a high plain belonging to Pampa Ondulada, with soft undulations influenced by the loess deposits. In this area, the height above sea level is higher than 5 m in the main NW–SE watershed with a maximum altitude of 30 m. These soils presented clay contents from 26 to 35% on the topsoil (Giménez et al., 2005; Hurtado et al., 2006a,b). The average annual precipitation rate for La Plata region is 1040 mm.

2.2. Sampling

Undisturbed soils were selected in the suburb of La Plata city, Province of Buenos Aires, from the two mentioned areas: (i) SP1 and SP2 belonging to the inland area (34°54′27″S, 58°8′21″W and 35°3′15″6″S, 57°51′12″W, respectively) and (ii) SP3 and SP4 belonging to the coastal area (34°54′8″5″S, 57°55′6″0″W and 34°48′27″6″S, 58°5′14″8″W, respectively). The soil locations are depicted in Fig. 1. In order to assure that soils have been undisturbed at least in the last 60 years, samples were taken from natural reserves where neither sowing nor livestock have been done, and from particular farms whose owners guarantee the lack of disturbance of the selected soils. Sampling was performed down to 50 cm from the surface, taking samples at approximately 3 cm depth intervals with a 20 cm × 20 cm × 3 cm shovel. In the cases in which it was possible, 2 or 3 samples were taken to check the representativeness of the results. The samples were collected in 2009 except SP1, which was taken in 2008.

2.3. Experimental techniques

The soils pH determinations were carried out in a suspension of a 1:5 soil/distilled water (v/v) mixture (United Nations Economic Commission for Europe Convention on long-range Transboundary Air Pollution, 2006), whereas the organic carbon percentage (% OC) was determined by the Black method (Claver, 1971). Soil texture was determined with an analysis of particle size by the pipette method after soil dispersion with oxygenated water and calgon (Claver, 1971).

The X-ray mineralogical study was undertaken in the clay fraction. Diffractions were obtained after saturation with magnesium and glycerol and heating to 823 K as suggested by Claver (1971). All diffraction patterns were recorded using a PANalytical, X’Pert PRO high resolution diffractometer, in the Bragg–Brentano geometry with CuKα radiation. The step mode collection was 0.02°, 0.02 s by step, with 2θ ranging from 3° to 32°. The mineral identification was made according to Claver (1971) and for semi-quantitative analysis, the diffraction pattern of oriented clay aggregates treated with glycol were analyzed using the PowderCell program (Kraus and Nolze, 1999). The structural data were taken from Downs and Hall-Wallace (2003). The analysis was done considering only the phyllosilicate structures.

For gamma spectroscopy, bulk samples were dried at 363 K during 48 h, crushed and sieved through a 2 mm mesh without previous separation. Before analysis, water quantity was checked using a Shitmadzu TGA-50 Thermogravimeter with a heating rate of 5 K/min up to 473 K in N2 atmosphere, being the remainder water content lower than 2 wt.%. Soil samples were placed into 2 L Marinelli-type box. The spectra were taken inside an EG&G Ortec low-background chamber in the range of 100 keV to 1.5 MeV, using a GMAX10 gamma EG&G Ortec detector with a standard electronic multichannel and a multichannel of 8192 channels. Energy calibration was performed with 57Co, 133Ba, 137Cs and 152Eu sources and efficiency calibration was carried out using sources with the same geometry and density as the soil samples, with an admixture of known amounts of naturally occurring 176Lu (99.9% purity) and 134Ba (99.99% purity) radionuclides (Perillo Isaac et al., 1997). The soil gamma attenuation coefficients were determined (Demir et al., 2008; Montes et al., 2009) to ensure that auto-absorption effects were similar for all samples. The laboratory background was obtained and corrections in the peaks were performed. All the spectra were recorded during four days, analyzed with a commercial program. The activity concentration of 137Cs was determined using the well-known 661.62 keV line. The detection limit (Ld) was 0.02 Bq/kg. Clay samples were also analyzed. In this case, spectra were taken during seven days and a clay efficiency sample was used.

2.4. Profile analyses

The ODCDFE approach (Antonopoulos-Domis et al., 1995; Toso and Velasco, 2001) assumes that 137Cs concentration c(x,t) is composed by two fractions, a free one, f(x,t), and a fixed one, b(x,t) as it can be seen in equation (1):
\[c(x,t) = f(x,t) + b(x,t) \] \hspace{1cm} (1)

where the free state concentration is the sum of two contributions (see equation (2)):

\[
\begin{align*}
 f(x,t) &= J_0 e^{-(\lambda + k_w)t} \left[\frac{1}{\sqrt{\pi D_{\text{eff}} t}} e^{-\frac{(x-v t)^2}{4 D_{\text{eff}} t}} - \frac{v_{\text{eff}} e^{x^2 v^2/2 D_{\text{eff}} t}}{2 D_{\text{eff}}} \text{erfc} \left(\frac{v_{\text{eff}}}{2 \sqrt{D_{\text{eff}} t}} \right) \right] \\
 b(x,t) &= k_{\text{eff}} e^{-k t} \int_0^t f(x,t') dt'
\end{align*}
\]

\[f(x,t) = m(x,t) + s(x,t) \] \hspace{1cm} (2)

with \(m(x,t) \) and \(s(x,t) \) representing the mobile and reversibly sorbed concentrations.

Assuming that the rate of the fixation process of cesium is proportional to the mobile fraction \((k m(x,t))\), the one-dimensional transient state mass balances for free and fixed concentrations yield to the equations system 3:

\[
\begin{align*}
 \frac{\partial f}{\partial t} &= D \frac{\partial^2 f}{\partial x^2} - v \frac{\partial f}{\partial x} - \lambda f(x,t) - k m(x,t) \\
 \frac{\partial b}{\partial t} &= k_{\text{eff}} f(x,t) - \lambda b(x,t)
\end{align*}
\] \hspace{1cm} (3)

where \(\lambda \) is the nuclear decay constant \((0.023 \text{ y}^{-1} \text{ for } ^{137}\text{Cs})\), and \(D \) \((\text{cm}^2/\text{y})\), \(v \) \((\text{cm}/\text{y})\) and \(k \) \((\text{y}^{-1})\) represent the diffusion coefficient in soil water, convection velocity of water in soil pores and the rate of transfer from free to bound state, respectively. Here, \(x \) is the depth below ground surface and \(t \) is the elapsed time since the deposit \((t = \text{year of sampling minus 1965}, \text{where 1965 corresponds to the maximum } ^{137}\text{Cs deposit year in the studied region})\).

Supposing that \(s(x,t) \) fraction is in equilibrium with the mobile fraction, both concentrations can be related by a linear relationship as it is shown in equation (4):

\[s(x,t) = K_0 \frac{\rho_b}{\rho} m(x,t) \] \hspace{1cm} (4)

where \(K_0 \) is the distribution coefficient \((\text{cm}^3/\text{g})\), \(\rho_b \) is the soil bulk density \((\text{g} \text{ cm}^{-3})\) and \(\rho \) is the soil porosity.

Using equations (2) and (4) and substituting in equation (3) results (equation (5)):

\[
\begin{align*}
 \frac{\partial f}{\partial t} &= D_{\text{eff}} \frac{\partial^2 f}{\partial x^2} - v_{\text{eff}} \frac{\partial f}{\partial x} - \lambda f(x,t) - k_{\text{eff}} f(x,t) \\
 \frac{\partial b}{\partial t} &= k_{\text{eff}} f(x,t) - \lambda b(x,t)
\end{align*}
\] \hspace{1cm} (5)

where \(D_{\text{eff}} \) is the effective diffusion coefficient, \(v_{\text{eff}} \) refers to the effective convective velocity, and \(k_{\text{eff}} \) is the effective rate constant of fixation:

\[D_{\text{eff}} = \frac{D}{\rho_b K_0 + 1}; \quad v_{\text{eff}} = \frac{v}{\rho_b K_0 + 1} \quad \text{and} \quad k_{\text{eff}} = \frac{k}{\rho_b K_0 + 1} \] \hspace{1cm} (6)

The denominator of equation (6) is frequently called the retardation factor, \(R = (\rho_b K_0/\rho) + 1 \). It quantifies the slowdown of the vertical solute transport in soil.

A nonlinear least square analysis was done in order to estimate the model parameters \(J_0, K_0, D_{\text{eff}} \) and \(v_{\text{eff}} \). The evaluation of parameters was conducted by fitting either the ODCDFE or the ODCDFE models to the profile data, minimizing the sum of squares of residuals. For this purpose, programs were developed in MatLab® environment (MathWorks, 2008). The Nelder–Mead algorithm was applied (Nelder and Mead, 1965). Finally, standard deviations associated with optimized parameters were computed from the Jacobian matrix, following a linearization methodology in nonlinear least squares fitting (Draper and Smith, 1981).

3. Results and discussion

3.1. Soil properties

The pH value and organic carbon fraction profiles for the four analyzed soils are depicted in Fig.2. For SP1 and SP3, pH is constant in depth with values of 6.5 and 8.6, respectively. For SP2 and SP4, pH value increases with depth, being approximately 9 at 50 cm deep. These values are in agreement with data previously determined for both areas (Giménez et al., 2005; Hurtado et al., 2006a,b).

No significant differences were observed between the organic carbon fraction soil profiles, with values ranging from 0.5% to 4%, decreasing with depth in agreement with previous studies carried out at soils of Buenos Aires Province (Giménez et al., 2005; Hurtado et al., 2006a,b).

![Fig. 2. a) pH and b) % OC determined profile values.](image-url)
The textural classes are presented in Table 1. Significant differences were found among the studied soils; the clay fraction of coastal soils (SP3 and SP4) are higher than those of the inland soils, as reported in the literature (Giménez et al., 2005; Hurtado et al., 2006a,b). According to X-ray diffraction patterns the identified phases are quartz, feldspar, kaolinite, illite, smectite and chlorite, respectively. The most abundant fraction corresponds to illite phyllosilicate. The results are shown in Table 1.

3.2. Inventories

The 137Cs activities determined in the aforementioned soils are presented in Table 2, together with the calculated inventories. This parameter was estimated as the sum of each soil slide contribution, considering the product of the activity, the thickness and a bulk density of 1.1 g cm$^{-2}$ (Hurtado et al., 2006a). After calculation, the resulting inventory value was reverted to 1965 the year corresponding to the maximum weapon test fallout (UNSCEAR, 2000, 2008). The average inventory value was 891 \pm 220 Bq/m2, which is close to the value determined for Buenos Aires city, 1058 Bq/m2 (Ciallella et al., 2003) and half of the values reported for Pampa Ondulada region of Buenos Aires Province, 2424 Bq/m2 (Bujan et al., 2000, 2003). At the same south latitudinal band (30°–40°) and in central region of Argentina, San Luis Province, the evaluated local inventory ranged from 745 Bq/m2 to 1877 Bq/m2 (Juri Ayub et al., 2007, 2008). All values are compatible with the expected one resulting from the fallout originated from the nuclear weapon tests in the Southern Hemisphere (UNSCEAR, 2000, 2008), suggesting that there was not other anthropogenic contribution in the region.

The inventories determined in La Plata region are compared in Fig. 3a to those determined in central region of Argentina (Juri Ayub et al., 2007, 2008; Bujan et al., 2000, 2003), Chile

Table 1
Soil texture, textural classes and the mineralogical X-ray identification together with the relative fractions of the determined phases.

<table>
<thead>
<tr>
<th>Soil</th>
<th>Depth (cm)</th>
<th>Clay (%)</th>
<th>Silt (%)</th>
<th>Sand (%)</th>
<th>Textural class</th>
<th>Illite (%)</th>
<th>Smectite (%)</th>
<th>Kaolinite (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP1</td>
<td>2.3</td>
<td>26.8</td>
<td>67.4</td>
<td>5.8</td>
<td>Silty loam</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.4</td>
<td>27.6</td>
<td>66.5</td>
<td>5.9</td>
<td>Silty loam/silty</td>
<td>99</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>49.0</td>
<td>56.5</td>
<td>39.4</td>
<td>4.1</td>
<td>Clay</td>
<td>79</td>
<td>18</td>
<td>4</td>
</tr>
<tr>
<td>SP2</td>
<td>1.8</td>
<td>15.1</td>
<td>64.1</td>
<td>20.8</td>
<td>Silty loam</td>
<td>86</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.0</td>
<td>12.4</td>
<td>68.4</td>
<td>19.3</td>
<td>Silty loam/silty</td>
<td>98</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>41.5</td>
<td>12.0</td>
<td>69.5</td>
<td>18.5</td>
<td>Silty loam</td>
<td>96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP3</td>
<td>4.0</td>
<td>35.2</td>
<td>54.6</td>
<td>10.1</td>
<td>Silty clay loam</td>
<td>48</td>
<td>22</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>10.5</td>
<td>27.9</td>
<td>61.2</td>
<td>11.0</td>
<td>Silty clay loam/silty</td>
<td>50</td>
<td>24</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>48.5</td>
<td>26.0</td>
<td>61.3</td>
<td>12.8</td>
<td>Silty loam</td>
<td>37</td>
<td>30</td>
<td>32</td>
</tr>
<tr>
<td>SP4</td>
<td>3.0</td>
<td>53.7</td>
<td>44.2</td>
<td>2.1</td>
<td>Silty clay</td>
<td>84</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>15.8</td>
<td>70.2</td>
<td>27.5</td>
<td>2.3</td>
<td>Clay</td>
<td>64</td>
<td>19</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>44.8</td>
<td>60.4</td>
<td>32.8</td>
<td>6.8</td>
<td>Clay</td>
<td>52</td>
<td>33</td>
<td>15</td>
</tr>
</tbody>
</table>

Table 2
Depth measured 137Cs activity concentrations and inventories referred at 1965.

<table>
<thead>
<tr>
<th>SP1</th>
<th>Depth (cm)</th>
<th>137Cs (Bq/kg) 137Cs inventory (Bq/m2)</th>
<th>SP2</th>
<th>Depth (cm)</th>
<th>137Cs (Bq/kg) 137Cs inventory (Bq/m2)</th>
<th>SP3</th>
<th>Depth (cm)</th>
<th>137Cs (Bq/kg) 137Cs inventory (Bq/m2)</th>
<th>SP4</th>
<th>Depth (cm)</th>
<th>137Cs (Bq/kg) 137Cs inventory (Bq/m2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.3</td>
<td>$^{14.0} \pm 0.2$</td>
<td>829 ± 148</td>
<td>1.8</td>
<td>$^{1.7} \pm 0.3$</td>
<td>1184 ± 178</td>
<td>4.0</td>
<td>$^{1.4} \pm 0.2$</td>
<td>740 ± 148</td>
<td>3.0</td>
<td>$^{4.3} \pm 0.3$</td>
</tr>
<tr>
<td></td>
<td>4.4</td>
<td>$^{1.5} \pm 0.2$</td>
<td>4.5</td>
<td>1.7</td>
<td>$^{0.3}$</td>
<td>7.8</td>
<td>1.6</td>
<td>$^{0.2}$</td>
<td>6.5</td>
<td>1.3</td>
<td>$^{0.2}$</td>
</tr>
<tr>
<td></td>
<td>6.5</td>
<td>$^{1.6} \pm 0.2$</td>
<td>7.3</td>
<td>1.5</td>
<td>$^{0.2}$</td>
<td>10.5</td>
<td>1.8</td>
<td>$^{0.3}$</td>
<td>9.5</td>
<td>1.1</td>
<td>$^{0.2}$</td>
</tr>
<tr>
<td></td>
<td>9.4</td>
<td>$^{1.8} \pm 0.2$</td>
<td>9.5</td>
<td>1.9</td>
<td>$^{0.2}$</td>
<td>14.3</td>
<td>1.4</td>
<td>$^{0.3}$</td>
<td>12.5</td>
<td>1.1</td>
<td>$^{0.2}$</td>
</tr>
<tr>
<td></td>
<td>12.1</td>
<td>$^{1.7} \pm 0.2$</td>
<td>12.0</td>
<td>2.4</td>
<td>$^{0.2}$</td>
<td>17.8</td>
<td>0.6</td>
<td>$^{0.2}$</td>
<td>15.8</td>
<td>0.8</td>
<td>$^{0.2}$</td>
</tr>
<tr>
<td></td>
<td>14.9</td>
<td>$^{1.3} \pm 0.2$</td>
<td>15.0</td>
<td>2.3</td>
<td>$^{0.2}$</td>
<td>20.0</td>
<td>0.3</td>
<td>$^{0.2}$</td>
<td>18.5</td>
<td>0.7</td>
<td>$^{0.2}$</td>
</tr>
<tr>
<td></td>
<td>18.3</td>
<td>$^{0.8} \pm 0.2$</td>
<td>18.8</td>
<td>1.8</td>
<td>$^{0.2}$</td>
<td>22.8</td>
<td>$^{<I_0}$</td>
<td>20.8</td>
<td>0.5</td>
<td>$^{0.2}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21.3</td>
<td>$^{0.3} \pm 0.2$</td>
<td>21.8</td>
<td>0.6</td>
<td>$^{0.2}$</td>
<td>26.8</td>
<td>$^{<I_0}$</td>
<td>23.3</td>
<td>0.5</td>
<td>$^{0.2}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23.5</td>
<td>$^{0.2} \pm 0.2$</td>
<td>25.0</td>
<td>0.3</td>
<td>$^{0.2}$</td>
<td>29.8</td>
<td>$^{<I_0}$</td>
<td>28.3</td>
<td>0.2</td>
<td>$^{0.2}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25.5</td>
<td>$^{<I_0}$</td>
<td>41.5</td>
<td>$^{<I_0}$</td>
<td>39.3</td>
<td>$^{<I_0}$</td>
<td>33.5</td>
<td>$^{<I_0}$</td>
<td>34.5</td>
<td>$^{<I_0}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>29.3</td>
<td>$^{<I_0}$</td>
<td>48.5</td>
<td>$^{<I_0}$</td>
<td>44.8</td>
<td>$^{<I_0}$</td>
<td>44.8</td>
<td>$^{<I_0}$</td>
<td>44.8</td>
<td>$^{<I_0}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>37.3</td>
<td>$^{<I_0}$</td>
<td>49.0</td>
<td>$^{<I_0}$</td>
<td>49.0</td>
<td>$^{<I_0}$</td>
<td>49.0</td>
<td>$^{<I_0}$</td>
<td>49.0</td>
<td>$^{<I_0}$</td>
<td></td>
</tr>
</tbody>
</table>
was observed in recently published data collected in Spain (Legarda et al., 2011). In fact, a strong correlation between the average annual precipitation rate and the deposits, indistinctly of the origin (those of the Chernobyl accident and those of the weapon tests), was observed. As it can be seen in Fig. 3c, it appears that the Andes Mountain played an important role due to the generation of higher annual precipitation rates in the Chilean side of the mountains. As a result, it seems that there was more 137Cs deposit on Chilean territories; it is also likely that the Andes functions as a barrier for Argentina and Brazil. This fact was corroborated after monitoring cow milk in Chile and Argentina on the same latitude, at both sides of the mountains. In this case only the milk from Chile contains trace concentrations of the anthropogenic 137Cs (Desimoni et al., 2009).

3.3. Vertical migration

As it can be observed in Fig. 5, differences in the 137Cs activity profiles have been detected. In general, the profiles of SP1, SP2 and SP3 seem to be typical of convective–diffusive processes (Likar et al., 2001; Bossew and Kirchner, 2004). However, SP2 profile is slightly different. It exhibits a local minimum near the surface and from 7 cm depth a convective–diffusive profile appears to be established. In the case of SP4 soil, collected at 5 km away from the La Plata river coast, the activity values are higher at the surface and decrease suddenly with a flat shape zone up to 24 cm depth. Both facts, the high values at the surface and the activity concentration profile shape, could be explained considering the fine texture (see Table 1) and the flat relief of the region, which induce water-logging. In fact, this area shows a low permeability of the underlying horizons and the phreatic water affects the deepest horizons (Imbellone et al., 2009).

Taking all these considerations in mind, SP1 and SP3 profiles were successfully fitted using the ODCDE model. Regarding SP2 sample soil, the ODCDE model did properly fit data from 7 cm deep
but efforts to reproduce the SP4 profile were fruitless. Because of the high clay fraction is mainly composed by illite, as disclosed from texture and X-ray diffraction studies, this work went a step further in the understanding of transport processes by accounting for the mechanisms of diffusion, convection and fixation process at the same time. To corroborate if 137Cs is fixed in the clay fraction, the 137Cs activity of this fraction was also determined. In fact, the determined activity concentrations confirmed a high retention degree with values ranging between 78 and 93% of the 137Cs soil activity. This result supports the application of the ODCDFE model to obtain a better description of the profiles and to find reliable transport parameters.

The SP1, SP2 and SP3 137Cs profiles were successfully fitted by the ODCDFE model. For SP4 soil, the model fits quite well considering the observed slight discrepancies related to flood regime, which was not included in the model.

The estimated parameters including the interval of confidence for a significant level of 0.05 are reported in Table 3 and the corresponding resulting profiles are presented in Fig. 5 (solid and dashed lines correspond to ODCDFE and ODCDE, respectively). As observed in Fig. 6, D_{eff} determined using both models agrees well with South American values (Juri Ayub et al., 2007, 2008; Schuller et al., 1997, 2004) and IAEA average values (IAEA, 2010), while v_{eff} parameter values are higher than the corresponding values reported in Chile soils (Schuller et al., 1997, 2004) and the average value reported by IAEA (IAEA, 2010).

Table 3

<table>
<thead>
<tr>
<th>Soil</th>
<th>ODCDE</th>
<th>ODCDFE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>J_0 (Bq cm/kg)</td>
<td>D_{eff} (cm2/y)</td>
</tr>
<tr>
<td>SP1</td>
<td>80 ± 3</td>
<td>0.8 ± 0.1</td>
</tr>
<tr>
<td>SP2</td>
<td>112 ± 13</td>
<td>0.8 ± 0.3</td>
</tr>
<tr>
<td>SP3</td>
<td>69 ± 5</td>
<td>0.5 ± 0.1</td>
</tr>
<tr>
<td>SP4</td>
<td>151 ± 37</td>
<td>0.052 ± 0.020</td>
</tr>
</tbody>
</table>

a Fixed value.

3.4. Correlations between the effective rate constant of fixation k_{eff}, the penetration depth L_p and soil properties

The profiles of organic carbon content on all the studied soils were similar; it seems that this soil property would not explain the differences in 137Cs distributions and transport parameters.

The k_{eff} values estimated in this work were plotted in Fig. 7 as a function of average pH in the soil column where 137Cs was detected. The maximum value is observed at pH approximately equal to 8, corresponding to SP4 soil. According to batch experiments for soils with different textural classes (Giannakopoulou et al., 2007), the maximum absorption is observed at a pH value equal to 8 approximately, in agreement with the k_{eff} maximum determined in the present study.

Another interesting parameter is the penetration depth, L_p, which is a characteristic depth for mass transport, and can be interpreted as 137Cs average penetration depth. In the case of ODCDFE model, L_p is given by equation (8):

$$\frac{1}{L_p} = \sqrt{\left(\frac{v_{\text{eff}}}{2D_{\text{eff}}}\right)^2 + \frac{k_{\text{eff}}}{D_{\text{eff}}}} - \frac{v_{\text{eff}}}{2D_{\text{eff}}}$$

Going further in the understanding of transport processes, L_p vs. the clay content is represented in Fig. 8. There, it can be observed that penetration depth decreases with clay fraction, playing the

![Fig. 6. Fitted D_{eff} and v_{eff} transport parameters. Open circles correspond to the present results. S1A1, S1D1, S2A1, S2B2, A1 and A2 refer to San Luis Province soils, Argentina (Juri Ayub et al., 2007, 2008), whereas P01—P014 and A, B, C and D refers to Chilean soils (Schuller et al., 1997, 2004). The vertical lines are the error bars. IAEA average values are also plotted as a dash line (IAEA, 2010).](image-url)
mental data did not give a definite conclusion, but it is possible to say that penetration depth depends on the clay content.

4. Conclusion

Inventories and 137Cs soil profiles were determined in the vicinity of La Plata city region, Argentina. The determined inventory values are in agreement with the fallout coming from nuclear weapons atmospheric tests performed in the South Atlantic and Pacific oceans. Taking into account the information from South America, it seems that the distribution of 137Cs inventory in latitudinal bands is perturbed by the presence of the Andes Mountain, which acts as a natural barrier for precipitation and wind circulation. These facts produce a high deposit on Chile region. The values seem to depend on the average annual precipitation rate more than on the latitudinal location of the sampled sites.

Concerning the activity profiles, the most used approach, the convection-dispersion with constant parameters, did not reproduce all profiles satisfactorily, probably due to the predominance of illite phase in the soils, a known receptor of cesium in an irreversible way. In this frame, the convection-dispersion-fixation model was used, and all the profiles could be reproduced. Although the SP4 137Cs profile fit using the convection-dispersion-fixation model is not perfect, it is still a better approach than the model without fixation. However, the contribution of other processes should be considered to reach a more confident interpretation of the profile.

The effective diffusion coefficient and the effective convection velocity values were in accordance with those determined for other regions of the Southern Hemisphere. The estimated rate constant of fixation showed a maximum for soil pH equal to 8.

Finally, it is tempting to conclude that penetration depth decreases with clay fraction, having the clay content a relevant role when referring to depth distribution. This fact is intimately related to the increase in the Cs transfer rate from mobile to bounded states as the clay content of the soil increases.

Acknowledgments

Research grants PIP 0230 from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina) and PICT 38047-Préstamo BID from Agencia de Promoción Científica (ANCYT, Argentina) are gratefully recognized. We gratefully acknowledge to Laboratorio de difracción de rayos X análisis térmico-diferencial-Centro de Investigaciones Geológicas-CONICET for the X-ray diffraction analysis. MLM is also indebted to Florencia Paez, who helped on reading the manuscript.

References

