FASL polymorphism is associated with response to bacillus Calmette-Guérin immunotherapy in bladder cancer

Authors:

Luís Lima, MSc 1,2,3,4, José A Ferreira, PhD 1,5, Ana Tavares, BSc 1,6, Daniela Oliveira, BSc 1

António Morais, MD 7, Paula A Videira, PhD 8, Rui Medeiros, PhD 9,10,11,4, Lúcio Santos, MD, PhD 1,11,12

1 Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal

2 ICBAS, Abel Salazar Biomedical Sciences Institute, University of Porto, Porto, Portugal

3 Nucleo de Investigação em Farmácia - Centro de Investigação em Saúde e Ambiente (CISA), School of Allied Health Sciences – Polytechnic Institute of Oporto, Porto, Portugal

4 LPCC, Research Department-Portuguese League Against Cancer (NRNorte), Portugal

5 Mass Spectrometry Center of the University of Aveiro, Campus de Santiago, Aveiro, Portugal

6 Department of Pathology, Portuguese Institute of Oncology, Porto, Portugal

7 Department of Urology, Portuguese Institute of Oncology, Porto, Portugal

8 CEDOC, Department of Immunology, Faculdade de Ciências Médicas, FCM, Universidade Nova de Lisboa, Lisboa, Portugal

9 Molecular Oncology Group, Portuguese Institute of Oncology, Porto, Portugal

10 Department of Pathology and Molecular Immunology, ICBAS, Abel Salazar Biomedical Sciences Institute, University of Porto, Porto, Portugal

11 Health Faculty of University Fernando Pessoa, Porto, Portugal

12 Department of Surgical Oncology, Portuguese Institute of Oncology, Porto, Portugal

Word count: 2506

Correspondence

Luís Lima, BSc, MSc.

Experimental Pathology and Therapeutics Group

IPO-Porto Research Center (CI-IPOP)

Portuguese Institute of Oncology, Porto

Rua Dr. António Bernardino de Almeida

4200-072 Porto, Portugal

e-mail: luis14lima@gmail.com

tel: +351225084000 (ext.5111)
ABSTRACT

Objective: Deregulation of FAS/FASL system may lead to immune escape and influence bacillus Calmette-Guérin (BCG) immunotherapy outcome, currently the gold standard adjuvant treatment for high-risk non-muscle invasive bladder tumors. Among other events, functional promoter polymorphisms of FAS and FASL genes may alter their transcrip- tional activity. Therefore we aim to evaluate the role of FAS and FASL polymorphisms in the context of BCG therapy, envisaging the validation of these biomarkers to predict response.

Patients and Methods: DNA extracted from peripheral blood from 125 bladder cancer patients treated with BCG therapy, was analyzed by Polymerase Chain Reaction (PCR) – Restriction Fragment Length Polymorphism for FAS-670A/G and FASL-844T/C polymorphisms. FASL mRNA expression was analyzed by real time PCR.

Results: Carriers of FASL-844 CC genotype present a decrease recurrence free survival after BCG treatment, when compared to FASL-844 T allele carriers (mean 71.5 vs. 97.8 months, p=0.030) and have an increased risk of BCG treatment failure (HR=1.922; 95%CI: [1.064-3.471]; p=0.030). Multivariate analysis shows that FASL-844T/C and therapeutic scheme are independent predictive markers of recurrence after treatment. The evaluation of FASL gene mRNA levels demonstrated that patients carrying FASL-844 CC genotype had higher FASL expression in bladder tumors (p = 0.0027). Higher FASL levels were also associated with an increased risk of recurrence after BCG treatment (HR=2.833; 95%CI: [1.012-7.929]; p=0.047). FAS-670A/G polymorphism analysis did not reveal any association with BCG therapy outcome.

Conclusions: Our results suggest that analysis of FASL-844T/C, but not FAS-670A/G polymorphisms, may be used as a predictive marker of response to BCG immunotherapy.

Keywords: Bladder Cancer; BCG immunotherapy; Polymorphisms; Fas/FasL; predictive markers.
INTRODUCTION

The Fas/Fas ligand (FasL) system is one of the major pathways of apoptosis and an important regulator of cell proliferation and immune system regulation. During carcinogenesis, tumor cells may alter this mechanisms to subvert the immune system and suppress the antitumor immune response [1].

Fas/FasL further controls T cell apoptosis after immune reaction by the process of activation-induced cell death (AICD) [2]. This mechanism involves the overexpression of both Fas and FasL upon activation by antigen or other stimuli, subsequently promoting cell “suicide” or “fratricide” [3]. Decreased Fas and elevated FasL expression has been found in many types of cancer including bladder cancer [4]. It has been shown that tumor cells may counterattack Fas-sensitive tumor-infiltrating lymphocytes (TILs) using heightened expression of FasL. This mechanism is thought to lead to tumor cell immune escape, thus contributing to cancer formation and progression [5].

Functional polymorphisms in the promoter region of FAS and FASL genes have been identified and alter the transcriptional activity of these genes, which may have implications in the Fas/FasL pathways [6, 7]. Moreover, they have been associated with a higher risk in various cancer models [8, 9]. In bladder cancer, FASL-844 CC genotype was associated with a significantly increased risk of bladder cancer [10]. However, the role of Fas/FasL and its functional polymorphisms have not been addressed in the context of bladder cancer treatment.

At the moment, the most effective treatment for high risk non-muscle invasive bladder cancer (NMIBC) consists of an immunotherapy with bacillus Calmette-Guérin (BCG) [11]. Generally it is performed as adjuvant to transurethral resection of bladder tumor (TURBT) in intermediate and high risk patients [11]. However, several studies demonstrated that 30% of the patients fail to respond to this therapeutic and in some cases the tumor may become more
aggressive [12]. Thus, early identification of patients better served by alternative and/or more aggressive approaches such as cystectomy is a critical aspect in the management of high-risk NMIBC [13, 14]. However, at the moment there are no established biomarkers to determine the outcome of BCG immunotherapy. Recently, several authors suggest that immunological predictive markers may yield promising clinical value in the context of predicting BCG immunotherapy outcome [14-16].

One of the main pathways of BCG anti-tumoral response is mediated by BCG and lymphokine-activated killer cells (BAK and LAK) [17]. Although it has been demonstrated that Fas/FasL pathway is not directly involved in BCG anti-tumoral effect [17, 18], BCG effector cells are sensitive to FasL-dependent AICD regulation [2] and possibly to FasL counterattack by tumor cells. Hypothesizing that a deregulation of Fas/FasL pathway may lead to immune escape and influence the efficacy of BCG immunotherapy, in this study we aimed to evaluate the role of FAS and FASL polymorphisms in the context of BCG therapy response. To the best of our knowledge, this is the first study addressing this subject and may provide important insights about the role of these molecules as predictive markers of BCG treatment outcome.

MATERIAL AND METHODS

Population

In this retrospective case-control study, all intermediate and high-risk NMIBC patients who underwent transurethral resection followed by BCG therapy between 1998 and 2006 at the Portuguese Institute of Oncology – Porto were eligible for this study. From a total of 193 patients, 14 had already died. The remaining 179 were invited to participate in the study, 70% of which accepted [19]. Patients blood samples were collected during 2006 and 2008 on patient’s follow-up consultation. All patients received intravesical instillation of BCG for 6 consecutive weeks starting 2-3 weeks after surgery, i.e., induction scheme (iBCG) and 56%
underwent further instillations every 3 months for two years, i.e., maintenance scheme (mBCG). The iBCG group includes patients treated before the European Association of Urology guidelines recommending the mBCG scheme and patients showing significant intolerance to long BCG treatment. The mean diagnostic age of the patients was 61.54±10.63 (min:36; max:97) years, with a male:female sex ratio of 105:20. The patients were followed by cystoscopy and urinary cytology every 3 months for the first year, every 6 month for the second year and every 12 months thereafter. The median follow-up time was 60 months (from 6 till 135 months). Tumor recurrence was defined as a newly found bladder tumor after the treatment, with at least one tumor-free cystoscopy between. The end point of the study was recurrence-free survival (RFS), defined as the period between the beginning of BCG treatment until the date of the most recent cystoscopy or recurrence date. Non-responders, as opposed to responders, were defined as patients submitted to BCG treatment that showed tumor recurrence. All clinicopathological information was obtained from patients’ clinical records. Informed and written consent from each patient was obtained. The institutional ethics committee approved the study.

DNA extraction and genotyping

Peripheral blood samples were collected following standard venipuncture technique in EDTA-containing tubes, and the DNA was extracted from the white blood cell fraction using a salting out protocol [20] and storage at -20°C.

The *FAS* and *FASL* genetic polymorphisms were genotyped using RFLP-PCR technique. The primers and enzymes used in *FAS-670A/G* and *FASL-844T/C* polymorphisms genotyping were the described by other authors [6, 7]. The PCR-RFLP conditions were the same as used by previously [20]. Genotyping data was read blind to the study endpoint. For quality control, 10% of the samples were randomly selected to a second PCR–RFLP analysis and 100% of concordance was observed.
RNA extraction and FASL mRNA expression analysis

A total of 34 tumor samples were randomly selected from the initial population according to the patient genotype for FASL-844T/C polymorphism (17 TT/TC and 17 CC). RNA was isolated from formalin-fixed paraffin-embedded (FFPE) tissue samples using "Absolutely RNA® FFPE Kit" (Stratagene, La Jolla, CA). Up to 2 μg of total RNA was reverse transcribed with random primers, using the “High Capacity cDNA Reverse Transcription Kit” (Applied Biosystems, Foster City, CA). Real-time PCR amplification of cDNA samples was performed in a StepOne™ Real-Time PCR System (Applied Biosystems) using TaqMan® Gene Expression Master Mix, primers and probes provided by Applied Biosystems. Expression of FASL was measured with TaqMan expression assay (ID: Hs00181225_m1) from Applied Biosystems.

The raw -ΔCt was used to analyse the FASL expression in FASL-844 CC or TT/TC genotypes carriers and therefore used as an estimate of the mRNA relative levels. ΔCt stands for the difference between the cycle threshold (Ct) of the amplification curve of the target gene and that of the GAPDH. The efficiency of the amplification reaction for each primer-probe is above 95% (as determined by the manufacturer).

Assessment of FasL expression by immunohistochemistry

The same 34 FFPE tissue sections were screened for FasL by immunohistochemistry with the streptavidin/biotin peroxidase method using anti-FasL mouse monoclonal antibody clone 5D1 (Leica Biosystems, Wetzlar, Germany). Tissues were incubated with primary antibody overnight in a 1:35 dilution. A semi-quantitative approach was established to score the immunohistochemical labelling based on the percentage of cells that stained positively. The entire section was screened and the cases were classified as: Low FasL IHC expression when the percentage of positive cells
was above median value of the overall expression (<25%). When the overall expression was above 25%, it was classified as High FasL IHC expression.

Statistical analysis

Statistical data analysis was carried out using the computer software Statistical Package for Social Sciences—SPSS for Windows (version 15.0). Chi-square analysis was used to compare categorical variables. The odds ratio (OR) and its 95% confidence interval (CI) were calculated as a measurement of the association between genotypes and the risk of recurrence. Kaplan-Meier survival curves were used to evaluate correlation between genotypes and RFS and were compared by log-rank statistical test. Further, multiple Cox regression analysis was used to assess the effect of individual polymorphisms on the time to recurrence in BCG-treated patients and to adjust for potential confounders. Non parametric Mann-Whitney test was used to compare the differences in the mRNA expression between the study groups.

RESULTS

FAS and FASL polymorphisms as predictors of BCG immunotherapy outcome

Regarding the evaluation of *FAS*-670A/G and *FASL*-844T/C polymorphisms, Table 1 presents genotype frequencies and the risk of recurrence after BCG treatment. It was observed that *FASL*-844 CC genotype frequency is higher in patients with recurrence, when compared with responders group (37.5% vs. 24.7%). An increased risk was noticed (OR=1.8), although, not statistically significant.

Kaplan-Meier function plots and probabilities analysis showed that *FASL*-844 CC genotype carriers have a shorter recurrence free survival after BCG treatment (mean 71.5 months) when compared to T allele carriers (mean 97.8 months, p=0.030, Fig. 1). In order to estimate the risk associated to this difference, Cox regression was performed and it was found that *FASL*-844 CC genotype carriers have an increase risk of BCG treatment failure (HR=1.897;
95%CI: [1.051-3.424]; p=0.034). Regarding FAS-670A/G polymorphism, no association was found with recurrence risk nor RFS.

The relation between clinicopathological characteristics and response to BCG treatment (i.e., responders vs. non-responders) is presented in Table 2. It was observed that treatment scheme is associated with recurrence after treatment (35.1% vs. 58.3%, p=0.011). Our previous report, with the same sample dataset, showed that iBCG treated patients or patients with multiple tumors have a shorter RFS [19]. In the present study we performed univariate Cox Regression and found that patients treated only with iBCG scheme have 2-fold risk of recurrence after BCG immunotherapy (HR=2.096; 95%CI: [1.177-3.731]; p=0.012). However, the presence of multiple tumors revealed a trend to an increase risk of recurrence (HR=1.760; 95%CI: [0.981-3.159]; p=0.058). There are no association between the evaluated polymorphism and the clinicopathological characteristics.

Therefore, multivariate Cox regression analysis adjusted to treatment scheme and multifocality was performed to assess the individual effect of FASL-844T/C on the risk of recurrence in BCG-treated patients. The results showed in table 3, reveal that independently of the treatment scheme adopted, patients carrying FASL-844 CC genotype as approximately a 2-fold risk of early recurrence and that independently of the patient FASL-844 genotype, patients treated only with iBCG scheme have approximately 2.5-fold risk of early recurrence. Thus FASL-844T/C, BCG scheme and multifocality are independent predictive factors of BCG immunotherapy outcome.

FASL mRNA expression and its relation with FASL-844T/C and treatment response

Of the 125 patients, 34 tumor tissues were available for evaluation of FASL mRNA expression levels. As shown in Fig. 2, significantly higher FASL mRNA levels were found in tumors from FASL-844 CC genotype patients than from TT or TC genotype patients (median mRNA relative levels, -7.80 vs. -6.14±0.46, p = 0.0027). In our samples the normalizing gene
(GAPDH) presents stable Ct values (mean±standard deviation: 29.95±2.26), demonstrating that RNA recovered from FFPE is suitable for gene expression analysis.

Individuals were categorized as high expressers (High \textit{FASL}) when the normalized transcripts levels (mRNA relative levels) were above the geometric mean of all cases (> -7.04), while individuals with mRNA relative levels below -7.04 were categorized as low \textit{FASL} expressers (Low \textit{FASL}). From the High \textit{FASL} group 78.6.% individuals were \textit{FASL}-844 CC genotype carriers, whereas among Low \textit{FASL} cases, only 30% were CC genotype (p=0.005). Kaplan-Meier analysis (Fig. 3) showed that High \textit{FASL} individuals have a reduced RFS (mean 51.4 months) when compared with Low \textit{FASL} individuals (mean 96.2 months, p=0.030). Univariate Cox Regression analysis demonstrated that High \textit{FASL} individuals have approximately 3-fold risk of recurrence after BCG treatment (HR=2.833; 95%CI: [1.012-7.929]; p=0.047). Immunohistochemistry was used to confirm FasL localization. It was observed that both FasL was present both in tumors and the immune infiltrates, independently of the \textit{FASL}-844T/C genotype. The FasL overall expression was in accordance with the levels of gene expression (p<0.001 – Fig. 4). No association was found between the FasL expression in the tumor and BCG response as well as other clinicopathological characteristics.

DISCUSSION

The management of high-risk NMIBC relies mostly on an adjuvant immunotherapy consisting on intravesical instillations with BCG, performed after transurothelial resection of the tumor [11]. BCG promotes a strong local immune response that results in tumor elimination [13, 21, 22]. In our most recent systematic review on this subject we point out several markers such as CD68, ezrin, HSP90, CD83, IL2 urinary levels related with BCG response [14]. Several functional polymorphisms in genes such as \textit{NRAMP1}, \textit{hGPX1}, \textit{XPA}, \textit{ERCC2} and 6 as well as in genes involved in inflammatory pathways (\textit{IL8}, \textit{TNFA}, \textit{IL6}, \textit{TGFBI}, \textit{COX2}, \textit{IFNG}) [14].
All these genetic markers have been identified based on a candidate gene approach using well established polymorphisms. Still, at the moment there are no reliable biomarkers to determine the outcome of this therapeutics, thereby permitting the early identification of patients better served by alternative therapeutics or cystectomy [14, 16]. It has been long thought that such biomarkers may be encountered among molecules/cells involved in the mediation of immune responses at the tumor site [14-16]. Among these putative immune-related biomarkers is the Fas/FasL pathway. Still, its involvement in BCG-mediated tumor cells elimination remains controversial since some authors demonstrated that BCG anti-tumoral effect is not mediated by Fas/FasL [17, 18] while others found higher levels of these molecules in T lymphocytes after treatment [23]. Nevertheless, this pathway is responsible for the regulation of cell apoptosis, namely T cell depletion by increasing AICD rates [2], therefore a deregulation of this pathway may compromise the immune response mediated by BCG immunotherapy and consequently contribute to modulate the therapeutics outcome. Tumor cells are known to modulate and evade Fas-mediated apoptosis, by simultaneously down regulating their own Fas expression and promoting the expression of FasL on their surface [5]. This protects tumor cells against FasL-induced apoptosis and, at the same time, promotes the apoptosis of activated T-cells expressing FasL, in what has been called as the FasL “counterattack” [5]. Functional polymorphisms in FAS and FASL genes may unbalance the expression of Fas/FasL by tumor cells and contribute to the establishment of an immune suppressive environment that favours tumor proliferation [5]. The unbalanced expression of Fas/FasL was observed in several tumors, including bladder cancer [4]. Moreover, the presence of the FAS and FASL polymorphism was correlated with an increased risk of developing bladder tumors [10] and with an enhanced T cell apoptosis after immune reaction [24].

Given the putative involvement Fas/FasL pathway on the immune response, one may hypothesize that functional polymorphisms affecting expression levels of this molecules may
deregulate this pathway contributing to the failure of BCG therapeutics [15]. Therefore it may be used as a predictive biomarker of BCG immunotherapy outcome.

Since the FASL-844T/C polymorphism was never evaluated in the context of BCG therapy, in this study we have evaluated these polymorphism in a dataset of Portuguese patients and found that those carrying FASL–844 CC genotype presented an increased risk of recurrence after treatment. In order to corroborate if FASL–844 CC genotype was associated with higher basal expression levels of FasL, we have also evaluated mRNA levels of FASL gene in tumor samples. This showed that patients carrying FASL-844 CC genotype had higher FASL expression in bladder tumors, as previously reported for others models [7, 24]. We have also demonstrated that higher FASL levels were associated with an increased risk of recurrence after BCG treatment. This suggests that patients carrying FASL-844 CC genotype have higher FASL expression in T-cells membrane or in tumors which may indeed compromise the efficiency of BCG treatment by balancing the immunological boost promoted by the bacillus. Our results suggest that this may not occur by an overexpression of FasL in tumors. More studies are needed to determine whether it may result from enhanced AICD in T-cells.

Herein we opted to extract RNA from FFPE tissues. Although mRNA extracted from FFPE is partial degraded, is possible to use this in real time PCR to obtain accurate and specific gene expression using amplicons under 100bp [25]. Based on these observations we choose amplicons lower than 100bp. We also observed that GADPH expression was stable among our samples and that the mean Ct was around 30. According to several authors this is an indicator of mRNA quality and amplification efficiency [25, 26]. Based in these concepts we can say that our RNA samples were suitable for expression analysis.

Regarding FAS-670A/G analysis, we could confirm that this polymorphism is not associated with BCG treatment outcome in the Portuguese population, as described for the Indian population [27], suggesting that FAS-670A/G may not influence the molecular mechanisms underlying this therapeutics.
Clinicopathological characteristics as predictors of BCG immunotherapy outcome has been long studied, although the findings are controversial [28]. Herein, we evaluated the predictive value of all clinicopathological characteristics and found that only patients treated with iBCG or with multiple tumors present a higher risk of failure, which is in accordance with previous findings [19, 29, 30]. However multivariate analysis showed that this did not influence the biomarker value of FASL-844T/C in the context of response to BCG immunotherapy. Still, the main limitation of this study was the low number of mBCG cases, thus the analysis of a larger patient set only treated with mBCG scheme will be required to evaluate more accurately the value of this polymorphism in the context of the currently adopted therapeutic scheme.

This is the first report addressing the potential role of FASL-844T/C polymorphism as a predictive marker of BCG immunotherapy response. Despite the limited number of samples, a significant association with the outcome of the therapeutics was observed. This highlights that FASL-844T/C polymorphism could be included in a biomarker panel to guide the management of high-risk bladder cancers.

Acknowledgments

The first author has a PhD grant (SFRH/BD/43399/2008) and the second author has a Postdoctoral grant (SFRH/BPD/66288/2009) from FCT – Fundação para a Ciência e Tecnologia, co-financed by European Social Fund (ESF) under Human Potential Operation Programme (POPH) from National Strategic Reference Framework (NSRF).

REFERENCES

bacille Calmette-Guerin with a reduced dose of 27 mg in superficial bladder cancer. BJU Int 2002; 89(7): 671-80.
Figure 1

The figure shows a Kaplan-Meier survival curve with two groups: FASL-844 TT/TC and FASL-844 CC. The p-value is 0.030, indicating a statistically significant difference between the two groups.

RFS (Relapse-Free Survival) is plotted on the y-axis, and Months are plotted on the x-axis.
Figure 3

The Kaplan-Meier survival curve shows the relationship between RFS and months. The curve for High FASL is compared to Low FASL. The p-value is 0.030, indicating a statistically significant difference between the two groups.

High FASL

Low FASL

p = 0.030
Figure 4

A. Low FASL expression
B. High FASL expression

<table>
<thead>
<tr>
<th></th>
<th>Low FASL mRNA expression</th>
<th>High FASL mRNA expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low FasL IHC expression</td>
<td>17 (85%)</td>
<td>3 (21.4%)</td>
</tr>
<tr>
<td>High FasL IHC expression</td>
<td>3 (15%)</td>
<td>11 (78.6%)</td>
</tr>
</tbody>
</table>

p<0.001
Figure 1 – Association between *FASL*-844T/C genotypes and recurrence-free survival (RFS) in the studied patients. Kaplan-Meier analysis to assess the effect and log-rank test (p=0.030); + censored *FASL*-844 TT/TC carriers; ♦ censored *FASL*-844 CC carriers.

Figure 2 – Real-Time PCR analysis for *FASL* mRNA levels in bladder tumors comparing expression levels in patients carrying *FASL*-844 TT or TC genotypes and CC genotypes. The Box plots represents in the horizontal bar the median value for mRNA in each group, the 25th and 75th percentile have been represented by the boxes. The whiskers represent the maximum and minimum values of the data, respectively. Black dots represent outliers. To compare the transcript levels between groups, non-parametric Mann-Whitney Test was applied. (***) – p = 0.0027.

Figure 3 – Effect of *FASL* mRNA levels in recurrence-free survival (RFS). Kaplan-Meier analysis to evaluate the association between Low or High *FASL* mRNA levels and RFS in the studied patients. Comparison performed by log-rank test (p=0.030); + censored Low *FASL* mRNA levels samples; ♦ censored High *FASL* mRNA levels samples.

Figure 4 – Immunohistochemistry (IHC) using anti-FasL antibody. Representative image of tumor (dark arrow) and immune infiltrate (white arrow) expressing FasL in specimens with low and high expression of *FASL* mRNA (400X). In cases with low *FASL* mRNA the FasL protein expression was lower and less intense (A). In cases with high FASL mRNA expression, FasL was markedly and diffusely expressed in both the tumor and the immune infiltrate (B). Expression of *FASL* mRNA is associated with FasL expression evaluated by IHC, p<0.001 (Chi-square test; C).
Table 1 – Polymorphism genotypes distribution and risk of recurrence after BCG therapy.

<table>
<thead>
<tr>
<th>Polymorphism</th>
<th>OR (95%CI)</th>
<th>P value<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>FAS-607A/G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>AG+GG</td>
<td>0.906</td>
<td>0.419-1.952</td>
</tr>
<tr>
<td>FASL-844T/C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TT+TC</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>1.832</td>
<td>0.839-3.999</td>
</tr>
</tbody>
</table>

OR: Odds ratio
95%CI: 95% Confidence Interval
^a: Chi-square test
Table 2 – Relation between patients, clinical and tumor characteristics and BCG treatment outcome

<table>
<thead>
<tr>
<th>Variables</th>
<th>Total</th>
<th>Responders</th>
<th>Non-Responders</th>
<th>P value<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n (%)</td>
<td>n (%)</td>
<td>n (%)</td>
<td></td>
</tr>
<tr>
<td>Stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ta</td>
<td>51 (40.8)</td>
<td>32 (41.6)</td>
<td>19 (39.6)</td>
<td>0.827</td>
</tr>
<tr>
<td>T1</td>
<td>74 (59.2)</td>
<td>45 (58.4)</td>
<td>29 (60.4)</td>
<td></td>
</tr>
<tr>
<td>Grade</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>26 (22.7)</td>
<td>17 (22.1)</td>
<td>9 (18.8)</td>
<td>0.656</td>
</tr>
<tr>
<td>High</td>
<td>99 (77.3)</td>
<td>60 (77.9)</td>
<td>39 (81.2)</td>
<td></td>
</tr>
<tr>
<td>Size (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><3</td>
<td>77 (69.4)</td>
<td>47 (69.1)</td>
<td>30 (69.8)</td>
<td>0.942</td>
</tr>
<tr>
<td>≥3</td>
<td>34 (30.6)</td>
<td>21 (30.9)</td>
<td>13 (30.2)</td>
<td></td>
</tr>
<tr>
<td>Tumor number</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unifocal</td>
<td>59 (47.2)</td>
<td>40 (51.9)</td>
<td>19 (39.6)</td>
<td>0.178</td>
</tr>
<tr>
<td>Multifocal</td>
<td>66 (52.8)</td>
<td>37 (48.1)</td>
<td>29 (60.4)</td>
<td></td>
</tr>
<tr>
<td>CIS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>112 (89.6)</td>
<td>67 (87.0)</td>
<td>45 (93.8)</td>
<td>0.230</td>
</tr>
<tr>
<td>Yes</td>
<td>13 (10.4)*</td>
<td>10 (13.0)</td>
<td>3 (6.2)</td>
<td></td>
</tr>
<tr>
<td>Recurrence status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary</td>
<td>65 (52.0)</td>
<td>41 (53.2)</td>
<td>24 (50.0)</td>
<td>0.724</td>
</tr>
<tr>
<td>Recurrent</td>
<td>60 (48.0)</td>
<td>36 (46.8)</td>
<td>24 (50.0)</td>
<td></td>
</tr>
<tr>
<td>Treatment scheme</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>iBCG</td>
<td>55 (44.0)</td>
<td>26 (35.1)</td>
<td>41 (58.3)</td>
<td>0.011</td>
</tr>
<tr>
<td>mBCG</td>
<td>70 (56.0)</td>
<td>60 (64.9)</td>
<td>5 (41.7)</td>
<td></td>
</tr>
</tbody>
</table>

^a: Chi-square test; *: 1.6% of them are pure CIS and 8.8% are concomitant CIS.
Table 3 – Multivariate analysis and risk estimation of FASL-844T/C, treatment scheme and tumor number on BCG immunotherapy outcome

<table>
<thead>
<tr>
<th></th>
<th>HR</th>
<th>95%CI</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FASL-844T/C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TT+TC</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>1.881</td>
<td>1.040-3.402</td>
<td>0.037</td>
</tr>
<tr>
<td>Treatment scheme</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mBCG</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>iBCG</td>
<td>2.363</td>
<td>1.316-4.243</td>
<td>0.004</td>
</tr>
<tr>
<td>Tumor number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unifocal</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multifocal</td>
<td>2.092</td>
<td>1.150-3.803</td>
<td>0.016</td>
</tr>
</tbody>
</table>

HR: Hazard ratio
95%CI: 95% Confidence Interval